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Abstract

Standard option valuation models leave no room for option illiquidity premia. Yet we

�nd the risk-adjusted return spread for illiquid over liquid equity options is 3:4 percent

per day for at-the-money calls and 2:5 percent for at-the-money puts. These premia

are computed using option illiquidity measures constructed from intraday e¤ective

spreads for a large panel of US equities, and they are robust to di¤erent empirical

implementations. Our �ndings are consistent with evidence that market makers in the

equity options market hold large and risky net long positions on average. We show that

the positive illiquidity premium compensates market makers for the risks and costs of

these long positions.
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In positive net supply markets such as bond or stock markets, it is natural to expect a

positive illiquidity premium (Amihud and Mendelson, 1986). In zero net supply derivatives

markets, market makers absorb buying and selling pressures and the sign of net demand

determines if the illiquidity premium is positive or negative. Market makers need to hedge

these risky positions (Jameson and Wilhelm, 1992; Engle and Neri, 2010) and cross-sectional

di¤erences in the resulting costs and risks should be re�ected in illiquidity measures as well

as the cross-section of expected option returns. Lakonishok, Lee, Pearson, and Poteshman

(2009) and Garleanu, Pedersen, and Poteshman (2009) document that in the equity option

market, end-users are net sellers. We therefore expect that in equity option markets, market

makers are compensated for the costs of being net long equity options by price discounts and

higher expected returns, and that in the cross-section the size of the option return premium

is positively related to the option�s illiquidity.

We empirically investigate this conjecture. We construct daily illiquidity measures based

on e¤ective spreads from a new dataset on intraday option trades and quotes for S&P 500

stocks during the 2004-2012 period. We con�rm the existence of selling pressures from end-

users. We �nd that expected option returns increase with illiquidity, and we refer to the

resulting di¤erences in expected returns as illiquidity premiums. To our knowledge, we are

the �rst to use intraday trades and quotes to compute illiquidity using e¤ective spreads for

equity options on a large number of underlying stocks. When sorting stocks into quintiles

based on this measure of option illiquidity, we �nd that the option spread portfolio that

goes long the most illiquid contracts and short the least illiquid contracts earns a positive

and signi�cant premium across moneyness categories. These e¤ects are statistically and also

economically signi�cant. Using daily returns, the average risk-adjusted option return spread

for at-the-money (ATM) calls is 3:4 percent and for ATM puts it is 2:5 percent.

We next delve deeper into the relation between e¤ective spreads, their economic determi-

nants, and expected returns. It is natural to think of bid-ask spreads and expected returns

as being jointly determined, especially in markets where market makers play a prominent

role. Indeed, the existing literature highlights that the bid-ask spread is an important source

of market makers�revenues and that it re�ects the costs and risks of market making and the

characteristics of the market, which includes investors�liquidity needs and the availability
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of counterparties.

We therefore investigate observable proxies that capture the risks and costs of market

making and the characteristics of the market, and investigate if they a¤ect e¤ective spreads

and expected returns. We �rst document that, consistent with the existing theoretical litera-

ture, proxies for asymmetric information, hedging costs, stock illiquidity and inventory risks

are signi�cant drivers of e¤ective spreads. Net option order imbalances, which we use as a

proxy for shocks to inventory, are also an important driver of e¤ective spreads. When we

regress option returns on lagged values of e¤ective spreads as well as proxies of the costs and

risks of market making we �nd that several of these variables are signi�cant determinants of

expected returns, but e¤ective spreads remain an economically and statistically signi�cant

driver of expected returns even in the presence of these variables. This is not surprising

because e¤ective spreads re�ect the illiquidity characteristics of options, including inventory

carrying and holding costs, volatility risks, the inability to perfectly hedge accumulated in-

ventory, as well as deviations from market makers�preferred inventory position (Amihud

and Mendelson, 1980), and information asymmetries. These major risks and costs of market

making are di¢ cult to measure precisely, but are transmitted into the illiquidity premium

and captured by the more precisely measured e¤ective spreads. Because e¤ective spreads en-

compass these di¤erent risks, their e¤ect on expected option returns di¤ers from the relation

between net option imbalances and returns documented in the existing literature (Garleanu

et al., 2009; Bollen and Whaley, 2004).

Our results are related to various strands of literature. The empirical literature contains

a wealth of evidence regarding illiquidity premia in stock and bond markets. It has been

shown in both markets that illiquidity a¤ects expected returns, with more illiquid assets

having higher expected returns. The illiquidity premium was �rst documented for the equity

market in Amihud andMendelson (1986), and for the bond market in Amihud andMendelson

(1991).1 There is also a growing body of evidence on the existence of signi�cant illiquidity

premia in other markets, see for instance Mancini, Ranaldo, and Wrampelmayer (2013) for

1Other studies of illiquidity premia in the equity market include Amihud and Mendelson (1989),
Eleswarapu and Reinganum (1993), Brennan and Subrahmanyam (1996), Amihud (2002), Jones (2002),
Pastor and Stambaugh (2003), Acharya and Pedersen (2005), and Lee (2011). Bond market studies include
Warga (1992), Boudoukh and Whitelaw (1993), Kamara (1994), Krishnamurthy (2002), Longsta¤ (2004),
Goldreich, Hanke, and Nath (2005), Bao, Pan, and Wang (2011), and Beber, Brandt, and Kavajecz (2009).
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the FX market, and Bongaerts, de Jong, and Driessen (2011) for the credit default swap

market.

There is an extensive theoretical and empirical literature on the behavior of market mak-

ers and the determination of prices and spreads in these markets. The theoretical analysis

of market maker inventory management goes back to Amihud and Mendelson (1980), Stoll

(1978), and Ho and Stoll (1981, 1983). Glosten and Milgrom (1985), Kyle (1985), Easley

and O�Hara (1987), and Grossman and Miller (1988) consider the role of informed traders

and asymmetric information. Garleanu, Pedersen, and Poteshman (2009) develop a demand-

based option theory involving market makers who incur unhedgeable risks. Hendershott and

Seasholes (2007), Comerton-Forde et al. (2010) and Hendershott and Menkveld (2014) em-

pirically study market maker behavior and inventory in stock markets. Du¢ e, Garleanu,

and Pedersen (2005) emphasize how prices and spreads are jointly determined in a search

model as a function of market characteristics and risks that are di¢ cult to measure and

quantify, such as investor holding costs and investors�need for immediacy.2 Option spreads

and their determinants have been analyzed in, for example, Vijh (1990), Jameson and Wil-

helm (1992), George and Longsta¤ (1993), Cho and Engle (1999), and De Fontnouvelle et

al. (2003).3 Finally, Bollen and Whaley (2004), Garleanu, Pedersen, and Poteshman (2009),

and Muravyev (2016) document the impact of inventory shocks and net demand on option

prices.4

It is important to note that the di¤erent strands of the (theoretical) literature emphasize

various aspects of the determination of prices and spreads in equity option markets. To the

best of our knowledge there is no single model that incorporates all of the above economic

intuition. As a result any test of the existing theory regarding the determinants of spreads

and returns will be somewhat ad hoc, in the sense that it amounts to a reduced-form analysis

of the implications of di¤erent models, rather than a structural test of an all-encompassing

model. Moreover, some of the determinants of prices and spreads suggested by existing

models are readily observable, while others, such as investors�liquidity needs, are di¢ cult or

2See also Du¢ e, Garleanu, and Pedersen (2007) and Weill (2008), among others.
3See also, among others, Engle and Neri (2010), Wei and Zheng (2010), and Huh, Lin and Mello (2015).
4For additional results on trading activity and demand pressures in equity option markets, see Easley,

O�Hara, and Srinivas (1998), Mayhew (2002), Pan and Poteshman (2006), and Roll, Schwartz, and Subrah-
manyam (2010).
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even impossible to measure directly. This motivates our use of e¤ective spreads as a measure

of illiquidity which re�ects market characteristics and the costs of market making, and it

explains the empirically observed robust relation between e¤ective spreads and expected

returns.

Our paper di¤ers from the existing literature by empirically studying illiquidity premia in

equity option markets. The existing empirical evidence on illiquidity premia and discounts

in derivatives markets is limited. Li and Zhang (2011) discuss the zero net supply case and

�nd empirically that buying pressure combined with illiquidity creates price premiums for

more liquid warrants relative to more illiquid options on the Hang Seng index. Deuskar,

Gupta, and Subrahmanyam (2011) �nd an liquidity price discount in the market for interest

rate caps and �oors, in which market makers have a net short position. Brenner, Eldor,

and Hauser (2001) compare central bank-issued and exchange-traded options and report a

21% illiquidity discount for non-tradable central bank-issued options. Consistent with these

�ndings, we show that the combination of selling pressures and illiquidity in equity options on

a panel of S&P500 stocks generates a positive illiquidity premium in expected equity option

returns. Net demand from end-users is negative on average, and market makers absorb it.

Liquidity providers in equity option markets thus hold long positions on average and require

higher compensation for more illiquid series, consistent with lower current prices and higher

expected returns.

1 Illiquidity and Expected Option Returns

In this section, we �rst develop our hypotheses regarding the relationship between

option illiquidity and expected returns. We then construct daily stock and option returns as

well as illiquidity measures from intraday trades and quotes. Finally, we de�ne and discuss

option order imbalance measures.

1.1 Hypothesis development

An extensive literature documents that higher illiquidity leads to higher subsequent

returns in positive net supply markets. Deuskar, Gupta, and Subrahmanyam (2011) and Li
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and Zhang (2011) discuss and empirically investigate the existence of illiquidity premia and

discounts in derivatives markets, which are zero net supply markets. Both papers convinc-

ingly argue that it is not obvious ex-ante whether one should expect liquidity premiums or

discounts in derivatives markets. They argue that the sign of the illiquidity risk premium

should depend on whether the market is characterized by net buying or net selling pressure.

Higher illiquidity will be positively correlated with expected returns in derivatives markets

where end-users are net sellers, while the correlation will be negative in markets where end-

users are net buyers. The existing empirical evidence is consistent with these predictions.

Deuskar, Gupta, and Subrahmanyam (2011) �nd a liquidity price discount in the market for

interest rate caps and �oors, where market makers have a net short position. Li and Zhang

(2011) use data on options and derivative warrants on the Hang Seng index and �nd price

discounts in the more illiquid options.

Our empirical analysis focuses on U.S. individual equity options. Using data on 303 stocks

from 1996 to 2001, Garleanu, Pedersen, and Poteshman (GPP, 2009) �nd that dealers in U.S.

equity option markets face selling pressures. We obtain option data on S&P500 stocks from

2004 through 2012 and we focus on the e¤ective spread as a measure of illiquidity. We con�rm

the existence of selling pressures in this market using end-users�signed option trading volume

on the CBOE and ISE exchanges. Our �rst and most important testable hypothesis concerns

the implications of this aggregate net selling pressure for the cross-section of expected option

returns:

� H0(1): If market makers on average face net selling pressures, then in the cross section

more illiquid options will have higher expected returns.

If H0(1) is con�rmed by the data, and we �nd below that it is, then it becomes of �rst-

order importance to investigate which factors determine option illiquidity as measured by

e¤ective spreads, which we denote by ESO. An extensive literature analyzes and documents

the determinants of illiquidity, including the determinants of e¤ective spreads in stock, bond,

and derivatives markets. When analyzing these determinants, it is critically important to

take market structure into account. In equity option markets, market makers play a very

important role. We therefore formulate the following hypothesis:
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� H0(2): In the cross-section, option e¤ective spreads, ESO; are an increasing function

of the costs and risks of market making, including hedging and rebalancing costs and

asymmetric information.

An extensive theoretical literature considers a market maker who manages inventory

(Amihud and Mendelson, 1980; Stoll, 1978; Ho and Stoll, 1981, 1983). This literature

highlights a variety of costs that result from holding inventory and may determine e¤ective

spreads. Some of these determinants are readily observable, but others, such as the availabil-

ity of counterparties, are more di¢ cult to quantify. Much of this literature on market making

is not speci�cally focused on derivatives markets. Jameson and Wilhelm (1992), Green and

Figlewski (1999) and Battalio and Schultz (2011) argue convincingly that inventory costs

and risks are much more serious for option market makers than for liquidity providers in

stock markets, due to hedging needs, model risk, and uncertain holding periods. In option

markets, market makers also incur hedging and rebalancing costs when they are unable to

quickly re-sell illiquid series (Leland, 1985; George and Longsta¤, 1993; De Fontnouvelle et

al., 2003; Engle and Neri, 2010). This literature suggests additional determinants of ESO.

Model risk (Green and Figlewski, 1999) is another important component of the risks of mar-

ket making in derivatives markets. Another strand of the literature (Grossman and Miller,

1988; Glosten and Milgrom, 1985; Kyle, 1985) studies the market maker�s optimal deci-

sions in reacting to informed traders and asymmetric information and predicts that e¤ective

spreads increase as a function of the amount of private information and informed traders

in the option market. Several studies argue that informed traders are attracted to option

markets because they can obtain higher leverage.

Many variables a¤ect spreads because they determine how the market maker responds

to deviations from her optimal inventory level. This in turn suggests that one of the most

important potential determinants of ESO is the deviation from optimal inventory.5 We

follow Bollen and Whaley (2004), Garleanu, Pedersen, and Poteshman (2009) and Muravyev

(2016), who use data on net demand, which we refer to as imbalances below. This variable

5The importance of inventory for market makers in the stock market has been investigated in empirical
work by Madhavan and Smidt (1993), Hendershott and Seasholes (2007), Comerton-Forde et al. (2010) and
Hendershott and Menkveld (2014), among others.
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represents a good measure of (unexpected) shocks to inventory and is therefore likely to

a¤ect the behavior of the market maker, spreads and expected returns.

Our next hypothesis addresses the e¤ect of net demand on e¤ective spreads. Amihud

and Mendelson (1980) predicts that larger deviations from optimal inventory, proxied by

imbalances, will lead to higher spreads. O�Hara and Old�eld (1986) show that risk averse

market makers adjust spreads as a function of inventory. Comerton-Forde et al. (2010)

argue that �nancing constraints can generate a relation between inventory and spreads with

risk-averse market makers. Much of the existing literature is again in the context of the

equity market, where the market maker is almost always net long most stocks (Hendershott

and Menkveld, 2014). In equity option markets, the dealers face net selling pressure, but

they also hold short positions for many option classes. We therefore formulate

� H0(3): In the cross-section, the more imbalanced the net demand for an option, the

higher the e¤ective option spread, ESO.

It is clear that some of the potential determinants of ESO that capture the cost of market

making can be quanti�ed relatively easily, such as option Greeks, but others, such as the

probability of informed trading are much harder to quantify. In dynamic search models of

�nancial markets (Du¢ e, Garleanu, and Pedersen, 2005), spreads and prices are functions

of factors such as investors�ability to �nd market makers, �nancing constraints, as well as

the immediacy with which investors require cash, which captures the notion of illiquidity in

the most intuitive possible way but is not straightforward to proxy for empirically.6

Our �nal hypothesis conjectures that because of measurement issues, e¤ective option

spreads computed from intraday trades and quotes continue to explain expected returns

even when standard proxies for various characteristics and determinants of inventory risk and

the market maker�s environment are taken into account. Hypothesis H0(2) above predicts

that e¤ective option spreads, ESO, capture the risks and costs of market making. While

some aspects of the market maker�s environment may primarily a¤ect prices and expected

6Equity options are exchange traded (see Battalio, Shkilko, and Van Ness (2016) for details on market
structure), and so strictly speaking there is no search in these markets. However, the characteristics of the
search process in Du¢ e, Garleanu, and Pedersen (2005) can be thought of as determining the ability of market
makers in equity options markets to provide liquidity while managing holding costs and inventory risk. See
Du¢ e, Garleanu, and Pedersen (2005) and Amihud, Mendelson, and Pedersen (2005) for a discussion.
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returns rather than spreads and vice versa, for the most part spreads and expected returns

are a¤ected by the same variables. As a result the e¤ective spread, which can be measured

fairly precisely, is a powerful determinant of expected returns because it encompasses proxies

for various market characteristics that are di¢ cult to measure precisely, such as inventory

holdings, the costs of managing these inventories, volatility risk, information asymmetries

(Goyenko, Ornthanalai, and Tang, 2015), and market makers�inability to perfectly hedge

accumulated inventory as well as deviations from optimal inventory (Amihud and Mendelson,

1980). This line of argument gives:

� H0(4): Even after controlling for observable drivers of the risks and costs of mar-

ket making, option e¤ective spreads computed from intraday trades and quotes are a

signi�cant driver of expected option returns.

Having developed four hypotheses regarding option returns and illiquidity, we next de�ne

and discuss the empirical measures required to carry out the corresponding tests.

1.2 Option returns and stock returns

In the standard Black-Scholes (1973) model, the option price, O; for a non-dividend

paying stock with price S is a function of the strike price, K, the risk-free rate, r, maturity,

T; and constant volatility, �; which can be written as

O = BS (S;K; r; T; �) (1.1)

Coval and Shumway (2001) show that in this basic model with constant risk-free rate and

constant volatility, the expected instantaneous return on an option E
�
RO
�
is given by

E
�
RO
�
=

�
r + (E

�
RS
�
� r)S

O

@O

@S

�
dt (1.2)

where E
�
RS
�
is the expected return on the stock. The sensitivity of the option price to

the underlying stock price (the option delta), denoted by @O
@S
, will depend on the variables

in equation (1.1). The delta is positive for call options and negative for puts. Thus the
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expected excess return on call options is positive and the expected excess return on put

options is negative.

The presence of E
�
RS
�
and @O

@S
on the right-hand side of equation (1.2) shows that it

is critical to properly control for the return on the underlying stock when regressing option

returns on illiquidity measures. We implement this control by using delta-hedged returns

computed as

~ROt+1;n = R
O
t+1;n �RSt+1St

�t;n

Ot;n
(1.3)

where the stock return, RSt+1, includes dividends and R
O
t+1;n is the daily raw rate of return

on option n. The option �t;n =
@Ot;n
@St

is computed by OptionMetrics using the Cox, Ross,

and Rubinstein (1979) binomial tree model, thus allowing for early exercise, and further

assuming a constant dividend yield. We obtain daily stock returns, prices, and the number

of outstanding shares from the Center for Research in Securities Prices (CRSP).

We now discuss the computation of the raw option returns ROt+1;n, from which we compute

the delta-hedged option returns, ~ROt+1;n. Raw option returns are constructed for all S&P500

index constituents using intraday trade prices and volumes from LiveVol.

We compute equally-weighted average daily returns on a stock-by-stock basis for di¤erent

moneyness categories by averaging option returns for all available series. For each option

moneyness category and for each stock, the delta-hedged return is then computed from

equation (1.3) as

~ROt+1 =
1

N

NX
n=1

OV Pt+1(Kn; Tn � 1)�OV Pt (Kn; Tn)

OV Pt (Kn; Tn)
�RSt+1St

1

N

NX
n=1

�t (Kn; Tn)

OV Pt (Kn; Tn)
(1.4)

where N is the number of available series in the particular category at time t that are also

in the sample at time t+1. Battalio and Schultz (2006) show that end-of-day option quotes

are problematic because trades may not have taken place at those quotes. When computing

returns we therefore use volume-weighted average intraday trade prices de�ned by

OV P (Kn; Tn) =

P
kDolV olkS

P
kP

kDolV olk
(1.5)

where SPk is the price for the k
th trade and DolV olk is the associated dollar volume for an
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option with strike price Kn and maturity Tn.7 In addition to the equal-weighted returns

in equation (1.4), below we consider open-interest weighted returns as well. In another

robustness exercise, we consider returns computed from volume-weighted intraday midpoints,

SMk , in equation (1.5) rather than trade prices, S
P
k , and midpoints computed at the time of

the last trade of the day.

We merge four datasets in our empirical analysis: CRSP, OptionMetrics, TAQ and

LiveVol. To be included in our sample, a stock is required to have data available across

all four data sources. Our sample period is from January 2004 to December 2012, because

for this period we have intraday option prices and quotes from LiveVol.8 We control for the

index composition on a monthly basis. The last month of a stock in the index corresponds

to the last month of the stock in our sample. We focus on S&P500 stocks for reasons of data

availability and because of their high liquidity, which biases our results towards not �nding

evidence of the importance of illiquidity.

For each stock, we consider put and call options with maturity between 30 and 180

days which are the most actively traded. Puts and calls are further divided into moneyness

categories. Much of our analysis of the determinants of spreads and returns is done using at-

the-money (ATM) options, but we also report results for out-of-the-money (OTM) and ALL

options. We follow Driessen, Maenhout, and Vilkov (2009) and Bollen and Whaley (2004)

and de�ne moneyness according to the option delta from OptionMetrics, which we denote by

�. OTM options are de�ned by 0:125 < � � 0:375 for calls and �0:375 < � � �0:125 for

puts and ATM options correspond to 0:125 < � � 0:375 for calls and �0:625 < � � �0:375

for puts. The ALL option category includes all moneyness categories, including in-the-money

(ITM) options and is de�ned by 0:125 < � � 0:875 for calls and �0:875 < � � �0:125 for

puts.9

Following Goyal and Saretto (2009), Cao and Wei (2010), and Muravyev (2016) we apply

�lters to the option data, eliminating the following series: (i) prices that violate no-arbitrage

7When computing returns we use the adjustment factor for splits and other distribution events provided
by CRSP.

8Battalio, Hatch, and Jennings (2004) document structural changes in option markets until 2002, after
which the market more closely resembles a national market.

9Note that these sample selection criteria eliminate deep ITM and OTM options, which are less actively
traded (see Harris and Mayhew, 2005).
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conditions; (ii) observations with ask price lower than or equal to the bid price; (iii) options

with open interest equal to zero; (iv) options with missing prices, implied volatilities or

deltas; (v) options with quoted bid-ask spread above 50% of the mid-quote; (vi) options

with mid-point prices below $0:10.10

For options that are not part of the penny-pilot program we remove series with prices

lower than $3 and bid-ask spread below $0:05, or prices equal to or higher than $3 and bid-ask

spread below $0:10, on the grounds that the bid-ask spread is lower than the minimum tick

size, which signals a data error. For penny-pilot options we remove series with prices equal

to or higher than $3 and bid-ask spreads below $0:05. Finally, we include only stock/day

observations with positive volume reported in OptionMetrics. For calls this yields data on

487 option classes on average per day in the ALL category, for puts we have 423 option

classes on average per day.

Using equal-weighted returns across stocks, Figure 1 plots the average across stocks of

the daily delta-hedged option returns over time. All the option returns display volatility

clustering and strong evidence of non-normality. As is typical of daily speculative returns,

the mean is completely dominated by the dispersion. Outliers are clearly visible as well.

Below, we therefore run robustness checks, eliminating the most extreme option returns.

Table 1 reports summary statistics for daily delta-hedged option returns. We �rst com-

pute the respective statistics for each option class and report the average across option

classes. Despite our focus on large capitalization stocks, we have less than 500 option classes

available because of the stringent �lters we use. We also report the average number of option

series per option class for each moneyness category.

The delta-hedged return averages are fairly large and negative for OTM options and

small and positive for ATM options. The option returns exhibit positive skewness and excess

kurtosis in all categories, which is expected due to the option payo¤ convexity. The option

returns display evidence of rapid mean-reversion as evidenced by the negative �rst-order

autocorrelation. These reversals are suggestive of the importance of liquidity provision in

10Jensen and Pedersen (2016) show that transaction costs and other frictions can overturn Merton�s rule
that one should never exercise a call on a non-dividend paying stock early. Because we focus on ATM and
OTM options, this result is not likely to signi�cantly impact our sample, and we therefore do not �lter out
options for which early exercise might be optimal.
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this market. The absolute return autocorrelation is positive for all categories and nontrivial

in Panels A and B, con�rming the volatility clustering apparent in Figure 1.

To put the option return moments in perspective, Table 1 reports sample statistics for

stock returns in Panel C. We have again averaged the sample statistics across stocks. Not

surprisingly, volatility and skewness are both much lower for stock returns than for option

returns. Kurtosis is quite high for stock returns although it is again lower than for option re-

turns. Volatility persistence, as measured by the absolute return autocorrelation, is generally

higher for stocks than for options.

1.3 Illiquidity measures from trades and quotes

We document the impact of option illiquidity on option returns, but also investigate

if illiquidity in the underlying stock market a¤ects option returns. We rely on the e¤ective

relative spread, which is a conventional measure of illiquidity that measures the direct costs

that dealers charge for transactions, re�ecting their costs of market making. The e¤ective

spread captures both the informational and non-informational components of trading costs

(Bessembinder and Venkataraman, 2010).

We follow the convention in the literature and compute stock illiquidity as the e¤ective

spread obtained from high-frequency intraday TAQ (Trade and Quote) data. Speci�cally,

for a given stock, the TAQ e¤ective spread on a trade k is de�ned as

ESSk =
2jSPk � SMk j

SMk
; (1.6)

where SPk is the price of the k
th trade and SMk is the midpoint of the consolidated (from

di¤erent exchanges) best bid and o¤er prevailing at the time of the kth trade. The daily

stock�s e¤ective spread, ESS, is the dollar-volume weighted average of all ESSk computed

over all trades during the day

ESS =

P
kDolV olkES

S
kP

kDolV olk

where the dollar-volume, DolV olk, is the stock price multiplied by the trading volume.
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Below, we compute ESS for each stock on each day during the 2004-2012 sample.11

Intraday options trading data are reported by all equity options exchanges via the Options

Price Reporting Authority (OPRA).

We obtain data from LiveVol, a commercial data vendor that uses the raw OPRA data

to create �les for each stock on each day with information about each option trade during

the day, including the national best bid and o¤er quotes prevailing at the time of the trade,

execution price, and trading volume of each trade. The LiveVol data start in January 2004

and our sample goes through the end of 2012.

Our sample contains all trades and matched quotes for all option series on S&P500 stocks.

Using intraday data we compute the e¤ective relative option spread associated with the kth

trade as

ESOk =
2jOPk �OMk j

OMk
,

where OPk is the price of the k
th trade and OMk is the midpoint of the consolidated (from

di¤erent exchanges) best bid and o¤er prevailing at the time of the kth trade.12 The daily

e¤ective option spread, ESO, is the volume-weighted average of all ESOk computed over all

trades during the day

ESO =

P
k V olkES

O
kP

k V olk

where the volume, V olk, is the number of contracts transacted in the kth trade.13 For every

day in the sample, we compute ESO for all series traded on any of the available option classes

in the sample. The ESO measure is then averaged across series within the same moneyness

category for each stock, using equal weights. To the best of our knowledge we are the �rst to

construct option illiquidity measures from TAQ-type data on an extensive sample of stocks

for an extended time period.

Panel A of Table 2 presents summary statistics of our liquidity measures for calls and

11For studies on stock market illiquidity that use relative bid-ask spreads, see for instance Hasbrouck and
Seppi (2001), Huberman and Halka (2001), Chordia, Roll, and Subrahmanyam (2000, 2001), and Chordia,
Sarkar, and Subrahmanyam (2005).
12Note that our choice of illiquidity measure requires that the option series is traded. Also, it e¤ectively

assumes that the midpoint is equal to the fundamental value. This assumption may be tenuous for options
on stocks with high borrowing costs, but for our sample of S&P500 stocks it is relatively innocuous.
13Following Bollen and Whaley (2004), we weigh ESOk by the number of contracts and not by dollar

volume in order to avoid the mechanical e¤ect from option moneyness.
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puts across di¤erent moneyness categories. E¤ective relative spreads are higher on average

for calls, at 6:41% (ATM), compared with puts, at 5:25%. OTM options have the highest

e¤ective spreads for both calls and puts. Note that the average e¤ective spread on stocks is

much smaller at 0:09%.

Panel A of Table 2 also contains information on option trading volume and the number

of trades. We report the average number of trades per stock per day as well as the average

number of contracts traded per stock per day. Call trading volume exceeds put trading

volume overall and for each moneyness category as well. While ATM call trading volume

averages 759 contracts per stock per day, ATM put volume is only 453 contracts per day.

This di¤erence in trading volume is also re�ected in the frequency of trading, which is lower

for puts.

Figure 2 shows the time series of e¤ective relative spreads for each moneyness category

averaged across option classes. All spreads spike up signi�cantly during the 2008-2009 credit

crisis, and less so during the European debt crisis in 2010-2011.14 All series are trending

down throughout the sample, as the option markets become more e¢ cient.15

The top panel of Figure 3 plots stock e¤ective relative spreads over time. There is no ob-

vious downward trend, because liquidity in stock markets had already increased signi�cantly

prior to the beginning of our sample. Figure 3 also plots the S&P500 index level (middle

panel) and the VIX volatility index (bottom panel). Note that when e¤ective spreads spike

in the recent �nancial crisis, the S&P500 drops and the VIX also increases.

Panels B (for calls) and C (for puts) in Table 2 report cross-sectional correlations between

ESO for OTM, ATM, and ALL options as well as ESS. We compute the cross-sectional

correlations between the illiquidity measures on each day and report the time-series averages

of these correlations. The correlation of di¤erent ESO categories with stock illiquidity ranges

between 12% and 18%. The correlation between OTM and ATM ESO is 48% for calls and

45% for puts. The correlation between ALL ESO and the ESO of the separate moneyness

categories is not surprisingly large and positive.

14While we rely on relative e¤ective spreads throughout this paper, the online appendix reports on how
the distribution of dollar spreads varies with the bid size of the option.
15This trend partly re�ects the move to quoting in pennies and nickels, and the introduction of the make-

or-take pricing model, both of which started in 2007. We are grateful to the referee for pointing this out.
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1.4 Order imbalances

We now discuss our proxy for deviations from optimal inventory. We obtain data

on open and close positions, and buy versus sell orders from end-users, that is, non-market-

makers, from the CBOE and the ISE. These are the two largest option exchanges and they

capture more than 60% of overall trading volume. Data are available starting in January

2005. Therefore, when analyzing the impact of imbalances on e¤ective spreads and expected

returns, our sample starts in January 2005 instead of January 2004.

The exchanges provide end-user initiated open-buy, open-sell, close-buy and close-sell

volumes for each series. We use this data to construct an option order imbalance measure

for each option class and moneyness category, in the spirit of Bollen and Whaley (2004):

IMBAL =

P
s j�sj (OpenBuys + CloseBuys �OpenSells � CloseSells)P

s(OpenBuys + CloseBuys +OpenSells + CloseSells)
; (1.7)

where s denotes the option series, and where we weight each series in the sum by its absolute

delta, j�sj, so that the IMBAL variable is measured in the number of underlying shares.

This measure has several advantages: (i) it provides signed volume so that we do not need

to use the otherwise prevalent Lee and Ready (1991) algorithm to sign trades; (ii) the data

does not include dealer volume, which allows us to directly observe the aggregate inventory

pressures on dealers.

Panel A of Table 2 reports the average option order imbalance for each moneyness cat-

egory. We report both delta-weighted imbalances as in equation (1.7) and simple sums. In

the analysis below we use delta-weighted imbalances throughout. Note that in either case

imbalances are strongly negative on average, particularly for call options.

Figure 4 plots weekly delta-weighted order imbalances averaged across option classes. For

each of the six option categories, order imbalances are persistent. Note also that the order

imbalances for calls are strongly negative throughout the period, con�rming that end-users

consistently are net sellers of equity call options. For put options the picture is more mixed.

Put order imbalances are mostly negative throughout the sample, but often close to zero or

even positive. In our empirical results below we document how these patterns a¤ect expected

returns, bid-ask spreads, and the cross-sectional relation between returns and ESO.

16



2 Illiquidity and the Cross-Section of Expected Option

Returns

We now investigate the cross-sectional relationship between option illiquidity and

expected option returns. We �rst discuss simple univariate portfolio sorts on option illiquidity

as measured by e¤ective relative spreads. We then present a number of robustness checks.

2.1 Sorting on option illiquidity

Perhaps the simplest approach to analyzing illiquidity e¤ects is to sort option classes

into illiquidity portfolios, and investigate the resulting patterns in option portfolio returns.

This approach reduces the noise in returns on the individual series.

Following Amihud (2002) and French, Schwert, and Stambaugh (1987), we use ex-post

realized returns as a measure of expected returns. In order to remove the �rst-order e¤ects

from the underlying asset, we transform the ex-post returns to delta-hedged returns using

equation (1.4). To alleviate potential asynchronicity biases, for our main results we follow

Goyal and Saretto�s (2009) analysis of option returns and skip one day between the compu-

tation of illiquidity measures and the computation of returns.16 Our analysis thus requires

that an option series is available on three consecutive days. We also report results without

skipping a day. We report these results for robustness, but also because we will refer to them

in Section 4 below.

Panels A and B of Table 3 report our main results when skipping a day. The table reports

portfolio sorting results for delta-hedged call and put returns. The sample period is from

January 2004 to December 2012 which corresponds to the availability of LiveVol data. We

sort option classes into quintiles based on lagged option illiquidity. For each quintile, we

report the percentage average return as well as the corresponding alpha from the Carhart

(1997) model.17 We compute t-statistics using a Newey-West (1987) correction for serial

16See Avramov, Chordia, and Goyal (2006) and Diether, Lee, and Werner (2009) for examples of studies
that use the skip-day methodology when studying equity returns. We have veri�ed that our results are
robust when skipping two days as well.
17Additional risk factors could be considered, in particular liquidity risk factors. However, because we

study daily returns, it is not obvious that standard equity liquidity factors, such as Pastor and Stambaugh
(2003), are applicable.
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correlation, using 8 lags.

Throughout the paper we report separate results for calls and puts. Note that put-call

parity does not hold for American style equity options nor when spreads are nontrivial as they

are in this market. Note also that the option-based predictability literature often exploits

the di¤erential information in call and put equity option prices, suggesting at least partial

segmentation of these markets.18 We want to avoid any loss of information by aggregating

calls and puts and so keep them separate throughout our analysis.

Panel A of Table 3 reports the results for daily delta-hedged returns on calls. Daily put

option returns are in Panel B. We report average returns and alphas for all call or put options

jointly (ALL), as well as for the two moneyness categories (ATM and OTM) separately. In

Panel A, the 5-1 portfolio that goes long the most illiquid calls and short the least illiquid

calls earns a large, positive and signi�cant premium in all categories. The Carhart alphas are

not very di¤erent from the average returns. The daily alpha spread is 3:4% for ATM calls

and 4:3% for OTM calls. The call returns and alphas are monotonically increasing across

the option spread quintiles for all categories of options.

Panel B of Table 3 reports the results for daily delta-hedged returns on puts. The daily

alpha spread is 2:5% for ATM puts and 1:9% for OTM puts. The premiums for puts are

smaller than for calls but they are still large, positive, and signi�cant. Note that the put

returns and alphas are also monotonically increasing across the option spread quintiles for

all categories of options.

Panels C and D of Table 3 report results for future returns without skipping a day. The

main conclusion from Panels C and D is that they con�rm the conclusions from Panels A

and B, but the results are economically even larger.

Note that while the alphas in Table 3 may appear unrealistically large, it is important to

remember from Table 2 that bid-ask spreads are large as well. Therefore, these alphas are

not readily earned by investors who must pay the spread.19

18See, for example, the recent evidence in Goncalves-Pinto, Grundy, Hameed, van der Heijden, and Zhu
(2016) and the literature review therein on the implications of this discrepancy for predicting the underlying
stock return. Note that Muravyev, Pearson, and Broussard (2013) �nd that options markets do not facilitate
stock price discovery.
19Note, however, that Muravyev and Pearson (2014) argue that because option prices tend to move slower

than the underlying stock price, investors can dramatically reduce the e¤ective dollar spreads (from 6:2 to
1:3 cents in their sample) by timing their option trades.
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Overall we conclude that the illiquidity premium is positive and signi�cant for calls and

puts. This con�rms hypothesis H0(1).

2.2 Robustness checks on option illiquidity sorts

It is natural to ask if the single-sort results in Table 3 are robust to various permuta-

tions in the empirical design. Table 4 reports on these robustness checks. Several robustness

checks use alternative return de�nitions. The online appendix reports and discusses descrip-

tive statistics for these returns. To save space Table 4 only reports the results for the 5-1

quintile spread returns in ATM options. The online appendix reports more detailed results

for the alternative return de�nitions.

The �rst column in Panel A of Table 4 contains the base case sorting results from Panels

A and B in Table 3. They are repeated here for convenience.

The second column in Panel A of Table 4 contains the results when option returns are

weighted by open interest (OI), rather than by equal weights as in the base case. The results

are similar to the �rst column. Call and put spread returns and alphas are signi�cantly

positive for all categories. This shows that our results are not driven by thinly traded series.

The third column in Panel A of Table 4 shows the results for only non�nancial stocks.

In the �nancial crisis, which is part of our sample, there was a temporary short-sale ban

on many �nancial stocks. It is therefore pertinent to provide a robustness check using only

non�nancials. In the third column, we thus remove corporations with SIC codes between

6200 and 6299 as well as between 6700 and 6799, corresponding to �nancials, insurance,

and real estate companies. We conclude that the option liquidity premium is signi�cant for

non�nancial stocks.

The fourth column in Panel A of Table 4 relies on only the top 100 option classes by

average daily option trading volume. They account for approximately 61% of option trading

volume in ATM calls and 58% of volume in ATM puts in our sample. Note that the long-

short option spreads are close to the base case from Table 3. The option illiquidity spread

is therefore not driven by options with low trading volumes.

The �fth column in Panel A of Table 4 trims away the 1% largest positive and 1%

largest (in magnitude) negative returns in each category. For calls we see that the results
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are virtually unchanged whereas for puts the average returns and alphas drop. They are

however still very large, positive, and strongly signi�cant.

The �nal column of Panel A uses returns computed from only the last traded price on

each day. While the long-short option return spread is smaller when we use this more noisy

return de�nition, the spread is still fairly large and highly signi�cant.

The use of trade prices may lead to well-known biases such as the bid-ask bounce (Blume

and Stambaugh, 1983). One way to address some of these biases is the use of midpoints

rather than trade prices. Panel B of Table 4 repeats the analysis in Panel A but we now

use intraday midpoints SMk , as de�ned in Section 1.3, to compute option returns instead of

intraday trade prices. Equation (1.5) thus gets replaced by

OVM(Kn; Tn) =

P
kDolV olkS

M
kP

kDolV olk
:

Comparing Panel B with Panel A, we see that the illiquidity premia are generally smaller

when using intraday midpoint quotes, in particular for the top 100 option classes by trading

volume and when trimming the extreme returns. However, the illiquidity premia remain

positive, very large, and strongly statistically signi�cant. Note also that the alphas in Table

4 are close to the raw returns everywhere. This also matches the base case results from Table

3.

The last column of Panel B of Table 4 reports on returns computed from midpoint quotes,

but it exclusively uses the quotes corresponding to the last trade of the day. These returns

are closer to the ones based on OptionMetrics data used by many existing studies.20 The

last columns of Panels A and B suggest that using the last quotes of the day yields results

that are similar to using the last trade price of the day. The caveat is that these returns in

the last column may be noisy. When using the averages in the other columns of Table 4, the

di¤erences between Panel A and Panel B are somewhat bigger.

ATM options are of particular interest, because they provide investors with substantial

exposure to volatility in the underlying stock. In Table 5 we therefore investigate the robust-

ness of the daily ATM results in Panels A and B of Table 3 when we narrow the width of the

20The online appendix also presents option return spreads computed from OptionMetrics and discusses
the di¤erences.
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moneyness interval. Throughout we keep the moneyness interval centered on � = +0:5 for

calls and � = �0:5 for puts. Table 5 shows that the illiquidity premium is highly robust to

changing the width of the moneyness interval from the original � 2 (0:375; 0:625] in Table

3 to intervals ranging from � 2 (0:4; 0:6] to � 2 (0:49; 0:51].

Finally, to investigate the robustness of the results over the sample period, for each

non-overlapping six-month period, the top row of Figure 5 plots the average 5-1 option

return spread when sorting on ESO. The bottom row plots the six-month averages of the

5-1 di¤erence in the ESO themselves. The 5-1 return spreads in the top row and the 5-1

di¤erences in e¤ective relative spreads in the bottom row display similar patterns including

a somewhat negative trend. We conclude that Figure 5 suggests a close correspondence

between the 5-1 e¤ective bid-ask spread and the 5-1 return spread.

3 The Determinants of E¤ective Spreads

So far we have determined that the e¤ective spread ESO is a robust determinant

of expected option returns. This clearly begs the question: What are the determinants of

ESO? There is an extensive theoretical and empirical literature on the determinants of

spreads in securities markets, and this work has inspired a growing empirical literature on

the determinants of spreads in option markets. We �rst discuss this literature and then we

use the variables suggested by these papers to explain the cross-sectional variation in the

ESO measure in our sample. Our investigation uses a more extensive sample compared to the

data used in existing studies, with the exception of Goyenko, Ornthanalai, and Tang (2015),

who use a similar data set. Whereas we focus on option returns, Goyenko, Ornthanalai,

and Tang (2015) document implications for stock returns and investigate the importance of

asymmetric information by focusing on earnings announcements.

3.1 Existing literature

The literature considers several distinct major components of bid-ask spreads. Mar-

ket makers face �xed order processing costs set by the exchange, costs due to asymmetric
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information, inventory costs, and hedging costs.21 Compared to liquidity providers in stock

markets, inventory costs pose a much bigger problem for option market makers because of

the volatility of the option position due to leverage, the stochastic risk exposure, and the

nature of the imbalances in the option market (Jameson and Wilhelm, 1992; Battalio and

Schultz, 2011).

These theories on the determinants of spreads in security markets all suggest variables

that ought to a¤ect bid-ask spreads in option markets. Information asymmetry theories

(Copeland and Galai, 1983) suggest that spreads should decrease with market activity and

increase when the probability of informed trading is higher. In option markets evidence of

informed trading has been presented by Easley, O�Hara, and Srinivas (1998) and Pan and

Poteshman (2006).

Inventory models analyze market makers who manage deviations from optimal inventory

and predict a negative relation between spreads and the price of the security (Ho and Stoll,

1983) and a positive relation between spreads and the security�s volatility (Biais, 1993).

These models also predict that spreads change with market maker risk aversion, which of

course is di¢ cult to measure. In option markets, Bollen and Whaley (2004) and Muravyev

(2016) use order imbalances as a proxy for deviations from optimal inventory.

Several studies discuss the importance of hedging costs. Cetin et al (2006) and Figlewski

(1989) argue that delta hedging invokes model misspeci�cation risks in option markets.

Jameson and Wilhelm (1992), George and Longsta¤ (1993), and de Fontnouvelle, Fishe,

and Harris (2003) �nd that inability to continuously rebalance the hedge increases options

spreads. Battalio and Schultz (2011) document that option spreads increased dramatically

during the September 2008 short-sale ban due to the inability of market makers to hedge

their position in options on short-sale restricted stocks. Finally, Evans, Geczy, Musto, and

Reed (2009) show that the di¢ culty of borrowing shares (specialness) increases option bid-

ask spreads. See also Muravyev, Pearson, and Pollet (2016) on the impact of uncertainty

regarding stock lending fees.

These hedging costs can be thought of as inventory costs; alternatively Engle and Neri

21On asymmetric information, see Copeland and Galai (1983), Glosten and Milgrom (1985), Kyle (1985),
and Easley and O�Hara (1987). On inventory costs, see Amihud and Mendelson (1980) and Ho and Stoll
(1983).
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(2010) argue that hedging costs can be viewed as a separate class of costs that a¤ects bid-ask

spreads and they document that market makers in equity options face hedging costs that

constitute a large part of the overall spread.

Du¢ e, Garleanu, and Pedersen (2005) specify a dynamic model with investors and market

makers. E¤ectively the role of market makers� inventory is ignored in their model, which

allows the authors to highlight the relation between market structure and characteristics,

the characteristics of the search process and spreads and returns. Spreads are a¤ected by

standard variables such as hedging costs, but also by variables that are di¢ cult to measure,

such as the expected arrival rate of counterparties and investors�liquidity needs.

3.2 Option e¤ective spreads regressions

We now turn to a detailed analysis of the determinants of ESO for our sample based

on the variables suggested in the existing literature. We proceed by conducting a Fama-

MacBeth (1973) regression analysis with ESO as the regressand and with contemporaneous

regressors that have been documented to impact liquidity in the literature. We also include

standard control variables and lags of ESO to capture persistence.

Table 6 contains the ESO regression results. Recall that ESO is the e¤ective relative

option spread. We report two sets of regressions each for ATM calls and puts: One that

includes positive and negative imbalances separately, and another that uses the absolute

value of imbalances. The use of the imbalances variable is motivated by Bollen and Whaley

(2004) and imbalances are de�ned in equation (1.7) above. The most important results in

Table 6 are as follows.

Leland (1985), Boyle and Vorst (1992), and Constantinides and Perrakis (2007) analyze

the e¤ect of illiquidity in the underlying asset on option prices. In the ESO regressions

in Table 6 the coe¢ cient on ESS is signi�cantly positive. It is more expensive to manage

option inventory for stocks with higher ESS, which drives up relative option spreads.

The probability of informed trading (PIN) measure from Easley, Hvidkjaer, and O�Hara

(2002) is a signi�cant driver of ESO. A high PIN indicates high asymmetric information

which in turn increases ESO. Note that PIN is only available at the quarterly frequency.

Engle and Neri (2010) suggest using the interaction of option Gamma and stock return
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volatility (Gamma � �) to capture hedging costs. Note from Table 6 that the slope on

Gamma � � is signi�cantly positive as expected. Higher hedging costs increase ESO.

Following Leland (1985) and Boyle and Vorst (1992) we apply a commonly-used proxy for

market makers�inventory rebalancing costs, the product of the option V ega and the relative

spread of the underlying stock (V ega �ESS). The e¤ect from V ega �ESS is not signi�cant

in Table 6, perhaps because ESS is also included in the regression.

The e¤ect of option volume on ESO is negative which is not surprising. High volume

leads to lower order processing costs and lower inventory holding costs.

As suggested by Duan and Wei (2009) we investigate the e¤ect of systematic equity risk

(the R2 from the Carhart 4-factor model) and also stock return volatility using a simple

symmetric GARCH(1,1) model (Bollerslev, 1986).22 The coe¢ cients on these variables are

both negative which is perhaps surprising. But recall that GARCH volatility increases the

option price, which is in the denominator of ESO. Systematic equity risk may increase the

price of the option through the market variance risk premium as well. Stock volume e¤ects

are weak as stock illiquidity is likely captured better by ESS. The absolute value of delta is

included to control for moneyness di¤erences inside each category.

We also control for �rm size and leverage following for instance Dennis and Mayhew

(2002) and Duan andWei (2009). We measure size using the log of market capitalization. We

de�ne leverage as the sum of long-term debt and the par value of the preferred stock, divided

by the sum of long-term debt, the par value of the preferred stock, and the market value of

equity. Because leverage is available only at a quarterly frequency, we use leverage computed

over the previous quarter. Size has a signi�cantly negative relationship and leverage has a

signi�cantly positive relationship with ESO in Table 6. As expected, smaller and more highly

leveraged �rms are more risky and more expensive to hedge.

We provide two sets of results with imbalances to illustrate the critical role of the sign of

the imbalances. In the �rst regression speci�cation, the coe¢ cient on imbalances is positive

and statistically signi�cant when imbalances are positive, while it is negative and statistically

22We include bt as a �rm-speci�c e¤ect, which is the square root of the R-square from the regression of
stock returns on the Carhart (1997) factors. Following Duan and Wei (2009), we obtain daily estimates of bt
by using one-year rolling windows to run daily OLS regressions of excess stock returns on the market, size,
book-to-market, and momentum factors.
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signi�cant when imbalances are negative. This �nding obtains for both calls and puts. It is

intuitively plausible because it means that spreads widen when imbalances are more extreme.

This �nding motivates our use of absolute imbalances as a proxy for option inventory risk in

the second regression speci�cation (see also Chordia, Roll, and Subrahmanyam, 2002). Note

the large and signi�cant positive slope on absolute imbalances for both call and put option

spreads.

We conclude that the results in Table 6 provide support for several theories on the de-

terminants of spreads and illiquidity. Stock illiquidity, asymmetric information, and hedging

costs increase ESO, con�rming theH0(2) hypothesis. Consistent with inventory theories, ab-

solute order imbalances increase ESO because market makers face buying or selling pressures

in the equity options market. This con�rms the H0(3) hypothesis.

The R2s in the regressions are around 50%. About half of the cross-sectional variation

in ESO is explained by known factors in a linear regression while about half remains un-

explained. Can these R2s be further improved upon by allowing for nonlinear regression

speci�cations? Because of the large number of variables in Table 6, we do not embark on

a fully-�edged nonparametric analysis as the curse of dimensionality presents serious chal-

lenges. Instead Figure 6 simply scatter plots six of the key variables in Table 6 against ESO

using quintile averages. Figure 6 suggests that the scope for allowing for nonlinear speci�ca-

tions in Table 6 is generally modest, with the exception of the V ega � ESS variable, which

was not signi�cant in Table 6. We conclude that the linear regression speci�cations in Table

6 provide a reliable analysis of the key drivers of ESO.

4 Determinants of Expected Option Returns

We have determined that ESO is a robust determinant of expected option returns

using univariate sorts. We then investigated the determinants of ESO in equity option

markets, and we obtain results that are consistent with the existing theoretical and empirical

literature. These determinants include measures of asymmetric information, hedging costs,

and imbalances, which is a proxy for inventory shocks.

These variables all capture the risks and costs of market making. It is likely that these
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costs are re�ected in expected returns as well as e¤ective spreads, because expected returns

and spreads together constitute market makers� remuneration for taking on these risks.

Indeed, one can view the spread as a down payment and the expected return as a daily fee

charged by the dealer to manage or accept the risk of a position.23 The existing literature

indeed suggests that some of the variables used in the e¤ective spread regressions in Table 6

are determinants of option returns.

In this section we investigate if ESO remains an important determinant of returns after

controlling for the determinants of ESO studied in Section 3. We �rst document how the

di¤erent proxies for the costs and risks of market making are related to expected returns

using univariate sorts. We then use multivariate regressions and report robustness checks.

We give special attention to the relation between imbalances and returns.

4.1 Univariate sorts

We �rst consider the direct impact of proxies for the costs and risks of market making

on expected option returns using univariate sorts. We consider the variables used in the

ESO regressions in Table 6 and proceed with univariate sorts like we did for ESO in Table

3.

Table 7 documents the univariate relation between the proxies for the costs and risks of

market making and expected option returns. We present results for the next day�s return.24

The �rst row of Table 7 repeats the results for returns at t + 1 based on ESO sorts from

Panels C and D in Table 3. The signs are as expected for most variables. Future returns are

higher for options on more illiquid stocks (ESS). They are also higher for higher volatility �,

systematic risk b, and option and stock volume. Size and leverage have di¤erent e¤ects for

puts and calls, but some of this evidence is not very signi�cant statistically. Higher hedging

costs Gamma � � and V ega � ESS also lead to higher returns. The last row indicates that

higher imbalances lead to lower returns. We provide a more detailed discussion of the results

23We are grateful to our discussant, Nick Bollen, for suggesting this interpretation.
24Recall that our main results in Tables 3 through 5 are obtained by skipping one day between the

computation of illiquidity measures and the computation of returns to alleviate potential asynchronicity
biases. Panels C and D of Table 3 indicate that the e¤ect of ESO on the return at t + 1 is qualitatively
similar but larger than the e¤ect on the return at t+ 2. When using returns at t+ 2 instead we get similar
results, with the exception of the imbalance variable, which we discuss in more detail in Section 4.3 below.
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for imbalances in Section 4.3 below.

For our purpose, it is important that Table 7 indicates that there are large di¤erences in

statistical signi�cance between the variables. Imbalances, V ega�ESS, the volume variables,

the absolute delta and of course ESO are highly statistically signi�cant. Interestingly, V ega�

ESS is not statistically signi�cant in the e¤ective spread regressions in Table 6. This suggests

that this inventory rebalancing cost is primarily incorporated in expected returns but not

in spreads. On the other hand, the PIN variable is not signi�cant in Table 7 but it is

highly statistically signi�cant in the e¤ective spread regressions in Table 6. This suggests

that market makers primarily react to asymmetric information by adjusting the spreads as

in Copeland and Galai (1983) and Glosten and Milgrom (1985), rather than requiring higher

returns.

We now turn to a multivariate regression analysis. This allows us to determine if ESO

remains signi�cant when controlling for these other determinants of returns, or if the e¤ect

of ESO is instead due to other previously identi�ed measures of hedging and inventory

costs. Another question we address with the multivariate regressions is how the statistical

signi�cance of the variables in Table 7 changes in a multivariate setup.

4.2 Multivariate return regressions

In order to test H0(4), we now investigate if ESO remains an important determinant

of returns after controlling for the proxies of ESO studied in Section 3. Recall that the

existing theory suggests many determinants of ESO that can presumably be rather precisely

measured, such as the option Greeks for instance. On the other hand, other theoretical

determinants of ESO, such as investors�liquidity needs or the expected arrival rate of coun-

terparties are much more di¢ cult or almost impossible to measure. By regressing returns

on ESO as well as observable determinants of ESO, we directly address the question if ESO

contains information on the costs of market making that is not captured by other variables

used in the literature. This also allows us to investigate if these two sources of market makers�

compensation are determined by the same proxies for the risks and costs of market making,

or alternatively if some costs are primarily re�ected in spreads and others in returns.

Table 8 reports the results for the multivariate return regressions. Panel A reports on
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call options and Panel B on put options. In each panel, we report on two regressions. Here

we discuss the rightmost two columns, where we include all variables from Tables 6 and

7 including imbalances as a single, signed variable. We discuss the leftmost two columns,

where we account for a potential di¤erential impact of negative and positive imbalances, in

Section 4.3 below.

The most important conclusion from Table 8 is that in the presence of a large number of

control variables, many of which are determinants of ESO, ESO remains a highly signi�cant

predictor of future returns, with the expected positive sign. Several �ndings in Table 8 are

consistent with those of Table 7. Imbalances, volume, the absolute delta and ESO are highly

signi�cant.

There are a number of interesting di¤erences between the univariate results in Table 7

and the multivariate results. Most notably, the signs on Gamma � � and V ega � ESS are

negative in Table 8. Moreover, in Table 8 the Gamma � � variable is strongly signi�cant,

as opposed to the results in Table 7. Consistent with Table 7, the statistical signi�cance of

systematic risk and PIN is rather low.

Recall that the R-squares in the linear ESO regressions in Table 6 are around 50%.

About half of the variation in ESO is explained by known factors while about half remains

unexplained. The multivariate return regressions in Table 8 con�rm that ESO contains a

substantial amount of additional information about the liquidity needs of investors and the

costs and risks of market making in option markets, that is not captured by the regressors

in Table 6. There are several potential explanations for this �nding. It is possible that

certain costs and risks of market making are primarily re�ected in spreads, while others are

primarily re�ected in expected returns. Perhaps a more plausible explanation is that several

of the ESO determinants are very di¢ cult or impossible to measure or even observe directly,

but they are re�ected in spreads.

In summary, we �nd an extremely robust relation between ESO and future returns even

after controlling for other variables, con�rming H0 (4). We conclude that ESO is a very

informative summary statistic for illiquidity and the risks and costs of market making.
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4.3 Imbalances and returns

Existing studies have highlighted the impact of imbalances on option prices (Bollen

and Whaley, 2004; Garleanu et al., 2009; Muravyev, 2016). We now discuss our results for

imbalances in more detail. Imbalances are negative (end-users are net sellers) on average

over the sample period, but Figure 4 indicates that their cross-sectional average is positive

in many weeks. Figure 7 provides additional perspective by plotting the percentage of stocks

with positive (dashed lines) and negative (solid lines) option order imbalances for each week

for ATM calls (top panel) and ATM puts (bottom panel). For calls, we have negative

imbalances for a large majority of stocks for virtually every week of our sample. For puts

the pattern is somewhat less evident.

The last row of Table 7 indicates that the long-short return is negative and highly sta-

tistically signi�cant for both calls and puts. To provide intuition for this sign, Table 7 also

provides sorts based on negative and positive imbalances separately. The market maker is

buying at time t when imbalances are negative at time t, and selling at time t when imbal-

ances are positive. For negative imbalances the �rst quintile contains the options with the

most imbalanced net demand; for positive imbalances the �fth quintile is the most unbal-

anced. If the market maker sets prices and prices revert at t+ 1, we expect positive returns

for the negative imbalances, because the market maker is now selling some of her inventory.

For the case of positive imbalances, the market maker is presumably trying to correct some

of her earlier net selling at t + 1, and we expect returns at t + 1 to be negative as a result.

We expect maximum price impact for the �rst quintile for negative imbalances and the �fth

quintile for positive imbalances, which should result in negative long-short returns at t + 1

in both cases.25

Table 7 con�rms these theoretically expected patterns consistent with price reversal.26

25As mentioned above, we use returns at t+1 throughout Section 4 to highlight the results for imbalances.
The online appendix presents the results for returns at t+2, which are qualitatively similar but quantitatively
less strong, presumably due to reversal. See also Chordia, Roll, and Subrahmanyam (2002) and Hendershott
and Menkveld (2014) for evidence on price reversal. The evidence in Comerton-Forde et al. (2010) suggests
that skipping a day is likely to obscure important interactions between demand pressures, spreads, and
prices.
26When imbalances are negative, all returns at t + 1 are positive. When imbalances are positive on the

other hand, some returns are positive, but they are economically small. Also note that they are delta-hedged
and not raw returns.
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The cross-sectional e¤ect of imbalances on returns is economically large and negative and

statistically signi�cant, as expected. The e¤ect is economically and statistically stronger

for positive imbalances. In the multivariate return regressions in Table 8, the results for

negative and positive imbalances are consistent with the univariate results in Table 7. Table

7 also indicates that returns are monotonic as a function of imbalances regardless of sign.

The last two columns of each panel in Table 8 therefore repeat the regression with the single,

signed imbalance variable, which is estimated with a statistically very signi�cant negative

sign. The online appendix further investigates the relation between imbalances and option

returns spreads. We �nd that the strength of the cross-sectional relation between option

e¤ective spreads and option returns on day t+ 1 depends on the option order imbalance on

day t.

Overall, the results in Tables 7 and 8 highlight the di¤erences between our �ndings and

those of Garleanu et al. (2009) and Bollen and Whaley (2004): These papers study the e¤ect

of imbalances on option prices, while our �ndings in Tables 3 and 4 establish an illiquidity

premium using option e¤ective spreads. E¤ective spreads re�ect the illiquidity characteristics

of options including inventory carrying and holding costs, volatility risks, the inability to

perfectly hedge accumulated inventory, information asymmetries (Goyenko, Ornthanalai,

and Tang, 2015), as well as market makers deviations from their preferred inventory position

(Amihud and Mendelson, 1980). Some of these risks and costs of market making are di¢ cult

to measure precisely, but are transmitted into the illiquidity premium and captured by

the more precisely measured e¤ective spreads. Because e¤ective spreads encompass these

di¤erent risks, their e¤ect on expected option returns is distinct from the relation between

net option imbalances and returns, as evidenced by the multivariate regressions in Table 8.

4.4 Robustness checks on return regressions

In this section we investigate if the impact of ESO on option returns documented in the

cross-sectional regressions in Table 8 is robust to various permutations of the empirical setup.

To address the possibility that misspeci�ed delta hedges generate the return premiums we

document, we add various variables to the return regressions that can capture shortcomings

in the Black-Scholes delta-hedging formula.
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In Table 9 we report Fama-MacBeth coe¢ cients on the ESO variable from multivariate

regressions using daily ATM option returns. We also report the corresponding t-statistics

and regression R2s. For reference, the �rst column for each panel reports the base case results

from the leftmost columns in Table 8. Panel A contains daily ATM call option regressions,

and Panel B contains daily ATM put option regressions.

The eight robustness tests we report on in Table 9 are as follows:

In the second column, we remove corporations with SIC codes between 6200 and 6299

as well as between 6700 and 6799, corresponding to �nancials, insurance and real estate

companies.

In the third column, we trim the largest 1% and smallest 1% option returns from the

sample to assess if our results are driven by outliers.

In the fourth column, we add the contemporaneous stock return, RSi;t+1, to pick up any

error in the delta-hedging procedure.

In the �fth column, we instead add the current stock price, St+1 and option price, Ot+1,

to pick up any biases from omitted regressors.

In the sixth column, we instead add the lagged option return, ROt and the lagged absolute

stock return
��RSt �� to pick up biases from omitted regressors.

In the seventh column, we add all the variables from columns four to six.

Our last two robustness checks are slightly di¤erent in that they do not build directly on

the base case regressions from Table 8:

In the eighth column, we run simple univariate regressions of option returns on ESO

without any control variables.

In the ninth column, we use ROt+2 instead of R
O
t+1 on the left-hand side of the regressions.

This matches Panels A and B in Table 3. We use the same regressors as in the base case

from Table 8.

The results for ATM call options in Panel A of Table 9 are quite striking. The coe¢ cient

on ESO is positive and highly signi�cant in all cases. In Panel B of Table 9, the coe¢ cient

on ESO for ATM puts is always positive and signi�cant as well. Not surprisingly the ESO

coe¢ cients are smaller when using ROt+2 on the left-hand side. This matches the return

spread results in Table 3.
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We conclude that the illiquidity premium is robust to variations in the empirical design.

4.5 The economic magnitude of the illiquidity premium

Our results suggest that ignoring option illiquidity is tantamount to overestimating

option prices, and this e¤ect is large and signi�cant. For example, for ATM call options, the

average coe¢ cient on ESO in the ROt+1 regressions in Panel A of Table 9 is 0:637. Table 2

shows that the standard deviation for ATM call option illiquidity is 4:02 percent. Therefore,

a one standard deviation positive shock to ATM call option illiquidity on day t would result

in a 2:56 percent increase in the day t+1 return on the call option. This is a large magnitude

for daily returns. For ATM put options the corresponding e¤ect is 0:563�3:62 = 2:04 percent

per day, which is also large.

As a consistency check, we can compare the 3:92 percent 5-1 return spread for ATM

calls in Panel C of Table 3 with the univariate regression coe¢ cient of 0:407 in Table 9.

Multiplying 0:407 by the di¤erence between the average ESO for quintile 5 (11:44) and

quintile 1 (1:77) yields 3:93 percent. For ATM puts, the 5-1 spread of 3:33 percent in Table

3 can be compared with the univariate regression coe¢ cient of 0:416 in Table 9 multiplied

by ESO quintile means of 8:68 less 1:33, which yields 3:06 percent. Note that we do not

report the ESO quintile means in the tables, but they can be gleaned from Figure 6.

5 Conclusion

We present evidence on illiquidity premia in equity option markets. Using portfolio

sorts, we �nd a large and signi�cantly positive impact of e¤ective spreads on expected option

returns. This result is not altered in a variety of robustness checks.

The economic mechanism underlying these �ndings is that illiquidity premia re�ect mar-

ket makers�compensation for the risks and costs of market making. Lakonishok et al. (2007)

and Garleanu et al. (2009) document that end-users have net short positions in the equity

options market, requiring market makers to hold net long positions. Market makers respond

by adjusting spreads and requiring positive returns on long positions. In the cross-section,

more imbalanced demand and higher costs leads to larger spreads as well as higher expected
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returns.

Regression results con�rm that option e¤ective spreads increase with stock illiquidity,

asymmetric information, more extreme imbalances, and hedging costs. When we regress

returns on e¤ective spreads and proxies for the risks of market making, e¤ective spreads

remain an economically and statistically important determinant of expected returns. This

con�rms that besides readily measurable costs of market making, e¤ective spreads re�ect

inventory holding costs and risks that are hard to observe and quantify separately.
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Figure 1. Average daily delta-hedged option returns. 2004-2012
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We plot the daily delta-hedged returns on portfolios of equity options equally-weighted across

option classes. Option returns are computed from volume-weighted intraday trade prices.

OTM refers to out-of-the-money, ATM refers to at-the-money, and ALL includes all strikes.

The sample starts January 2004 and ends December 2012.
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Figure 2. Average e¤ective relative equity option spreads. 2004-2012
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Average daily option illiquidity is computed as the equal-weighted average across option

classes of the e¤ective relative spread. The underlying trade and quote data are from LiveVol

and include the S&P 500 constituents for which options trade during our sample. The sample

period is January 2004 to December 2012.
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Figure 3. Daily average stock e¤ective relative spreads, S&P500 index,
and the VIX
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We plot the daily equal-weighted average across stocks of stock illiquidity, the daily level of

the S&P 500 index, and the daily VIX. Stock illiquidity is estimated from TAQ (Trade and

Quote) intraday data as the dollar-volume-weighted average of e¤ective relative spreads for

each day. The sample period is January 2004 to December 2012.
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Figure 4. Option Order Imbalances
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Weekly order imbalances are computed as the delta-weighted buy volume less sell volume

as a percent of total volume. The underlying option data include the S&P 500 constituents

for which options trade during our sample. The sample period is January 2005 to December

2012.
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Figure 5. Long-short return spreads and e¤ective relative spreads.
ATM calls and puts
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We sort option classes into quintiles based on lagged option illiquidity measured by e¤ective

relative spreads (ESO). For each six-month period, we plot in the top row the average 5-1

option return spread when sorting on ESO. The bottom row plots the six-month averages of

the 5-1 di¤erence in ESO themselves. ATM calls are shown in the left column and ATM puts

are shown in the right column. The sample includes S&P 500 constituents with available

options data during 2004-2012.
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Figure 6. Scatter plots of various variables against ESO
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We �rst sort each variable on ESO. We then scatter plot the mean value of the variable for

each quintile against the mean value of ESO for each quintile. The sample period is January

2005 to December 2012.
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Figure 7. Percentage of stocks with positive and negative
ATM option order imbalances
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The plot shows the percentage of stocks for which the total weekly ATM option order im-

balance is positive (dashed lines) or negative (solid lines), where negative indicates that

end-users are net sellers. The top panel reports on call options and the bottom panel on put

options.
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Descriptive statistics of daily delta-hedged option returns and stock returns in percent

OTM ATM ALL OTM ATM ALL
Average -2.11 0.32 -0.36 -2.57 0.14 -0.94 Average 0.04
Std.dev. 27.18 18.91 19.72 22.65 19.11 19.45 Std.dev. 2.40
Skewness 2.14 1.69 1.86 1.78 1.79 1.68 Skewness 0.49
Kurtosis 38.01 29.79 38.18 22.86 27.82 27.55 Kurtosis 19.60
ρ(1) -0.17 -0.20 -0.18 -0.10 -0.12 -0.08 ρ(1) -0.04
abs [ρ(1)] 0.12 0.16 0.15 0.11 0.13 0.12 abs [ρ(1)] 0.21

Avg # stocks 379 390 487 359 339 423 Avg # stocks 498
Avg # series 3.16 2.96 7.03 3.56 2.65 6.28

C. Daily stock returns

Table 1

B. Daily delta-hedged put returnsA. Daily delta-hedged call returns

We provide descriptive statistics for daily stock returns and delta-hedged option returns computed from volume-weighted intraday trade prices. First 
we compute the descriptive statistics for each stock and then we take the cross-sectional averages of these statistics. We report the mean (in percent), 
standard deviation (in percent), skewness, kurtosis, first-order autocorrelation of delta-hedged returns ρ(1), and first-order autocorrelation of the 
absolute value of delta-hedged returns, abs[ρ(1)]. OTM (out-of-the-money) corresponds to 0.125<Δ≤0.375 for calls and -0.375<Δ≤-0.125 for puts, 
where Δ is the Black-Scholes delta. ATM (at-the-money) corresponds to 0.375<Δ≤0.625 for calls and -0.625<Δ≤-0.375 for puts. Options are 
aggregated across maturities between 30 and 180 days. The option data are from LiveVol. The sample includes the S&P 500 constituents with valid 
traded options data from January 2004 to December 2012.



Descriptive statistics on illiquidity measures

Calls OTM ATM ALL Puts OTM ATM ALL Stocks
Mean 12.58 6.41 8.03 Mean 9.77 5.25 7.01 Mean 0.09
Std 7.59 4.02 4.95 Std 6.54 3.62 4.76 Std 0.07
Min 0.34 0.20 0.46 Min 0.28 0.11 0.21 Min 0.03
Max 63.61 39.79 47.78 Max 56.57 34.46 45.31 Max 1.18
ρ(1) 0.27 0.33 0.34 ρ(1) 0.27 0.28 0.30 ρ(1) 0.28
Avg # stocks 379 390 487 Avg # stocks 359 339 423 Avg # stocks 498
Avg volume 740 759 1595 Avg volume 646 453 1098
Avg # trades 36 41 87 Avg # trades 28 23 53
Avg imbalance -20.72 -15.78 -15.61 Avg imbalance -13.63 -7.62 -10.72
Avg imbalance (∆) -6.15 -7.65 -6.55 Avg imbalance (∆) -3.43 -3.97 -4.10

OTM ATM ALL Stocks OTM ATM ALL Stocks
ATM 0.48 1.00 ATM 0.45 1.00
ALL 0.88 0.70 1.00 ALL 0.89 0.68 1.00
Stocks 0.17 0.18 0.17 1.00 Stocks 0.15 0.12 0.14 1.00

The table presents summary statistics for the illiquidity measures (in %) in panel A and the correlations between the illiquidity measures for call and put options (in 
panels B and C respectively). Option and stock illiquidity measures are estimated from intra-day data as the volume weighted average of the effective relative spread 
for each day. For each stock and on each day, we compute the average illiquidity of all the available options in a given category, and then we compute across time 
the mean, the minimum, the maximum, the standard deviation and the first-order autocorrelation, ρ(1). Finally, we report the across stock averages of these statistics 
in panel A. Panel A also reports the average option volume (in number of contracts), the average number of trades per stock per day, and the average order 
imbalance (end-user buy minus sell orders in percent of total) equal and delta-weighted. We compute the cross-sectional correlations between the illiquidity 
measures on each day and report the time-series averages of these correlations in panel B for call options and panel C for put options. The sample includes the 
S&P500 constituents with valid traded options data from January 2004 to December 2012 except for imbalances, which are available only from 2005.

Table 2

A. Descriptive statistics on option and stock effective relative spreads

B. Correlations of call option and stock olliquidity C. Correlations of put option and stock illiquidity



Portfolio returns and alphas. Sorting on option illiquidity

1 2 3 4 5 5-1 1 2 3 4 5 5-1
OTM Mean -2.828 -1.889 -1.212 -0.471 1.492 4.331 -2.427 -1.779 -1.517 -1.326 -0.508 1.916

Alpha -2.673 -1.732 -1.050 -0.311 1.669 4.349 -2.491 -1.846 -1.586 -1.399 -0.585 1.904
T-stat -17.420 -11.140 -5.980 -1.570 7.060 26.370 -11.620 -8.190 -6.000 -4.490 -1.520 8.420

ATM Mean -1.182 -0.442 -0.050 0.554 2.238 3.422 -1.128 -0.542 -0.239 0.172 1.390 2.517
Alpha -1.082 -0.341 0.054 0.661 2.359 3.440 -1.185 -0.600 -0.299 0.109 1.321 2.506
T-stat -10.030 -3.150 0.440 4.630 12.070 26.210 -7.730 -3.920 -1.660 0.510 4.490 14.400

ALL Mean -1.266 -0.769 -0.388 -0.017 0.813 2.084 -1.472 -0.922 -0.806 -0.596 -0.230 1.233
Alpha -1.158 -0.655 -0.273 0.107 0.950 2.112 -1.530 -0.982 -0.872 -0.664 -0.307 1.217
T-stat -9.480 -4.970 -1.770 0.620 4.540 16.890 -8.410 -4.920 -3.570 -2.370 -0.870 5.920

1 2 3 4 5 5-1 1 2 3 4 5 5-1
OTM Mean -2.924 -2.117 -1.745 -0.830 2.883 5.806 -2.560 -2.021 -1.896 -1.692 0.495 3.052

Alpha -2.765 -1.958 -1.580 -0.665 3.065 5.826 -2.626 -2.090 -1.964 -1.768 0.409 3.034
T-stat -17.320 -12.190 -9.280 -3.430 11.920 29.560 -12.030 -9.320 -7.510 -5.620 0.980 11.760

ATM Mean -1.190 -0.585 -0.251 0.357 2.723 3.917 -1.315 -0.700 -0.433 -0.052 2.010 3.325
Alpha -1.089 -0.480 -0.145 0.467 2.846 3.938 -1.374 -0.758 -0.493 -0.116 1.937 3.311
T-stat -9.730 -4.360 -1.200 3.320 14.160 28.490 -8.890 -4.810 -2.730 -0.550 6.160 17.010

ALL Mean -1.013 -0.692 -0.685 -0.409 1.089 2.101 -1.365 -1.014 -1.040 -0.952 0.179 1.544
Alpha -0.901 -0.578 -0.566 -0.282 1.232 2.133 -1.424 -1.076 -1.106 -1.022 0.098 1.523
T-stat -7.100 -4.340 -3.730 -1.680 5.690 16.890 -7.750 -5.480 -4.580 -3.610 0.260 6.690

Table 3

The table reports portfolio results for daily delta-hedged call and put returns and alphas. In panels A and B we sort stocks into quintiles 
based on their twice lagged option illiquidity and in panels C and D based on once lagged illiquidity. Option illiquidity is obtained as 
volume-weighted effective spreads from intra-day LiveVol data. For each quintile, we report in percent the mean, the alpha from the 
Carhart model and its t-statistic with Newey-West correction for serial correlation, using 8 lags. The sample includes the S&P 500 
constituents with valid traded options data from January 2004 to December 2012.

A. Daily call option returns at t+2 B. Daily put option returns at t+2

C. Daily call option returns at t+1 D. Daily put option returns at t+1



Daily ATM option return spreads. Various robustness checks

A. Returns 

Base case 
from Table 3

OI-weighted 
returns

Only 
nonfinancial 

stocks

100 stocks 
with largest 

option 
volume

Trim 1% of 
returns in 
each tail

Using only 
last price of 

each day

ATM Mean 3.422 3.349 3.394 3.450 3.375 1.724
Calls Alpha 3.440 3.366 3.408 3.448 3.392 1.757

T-stat 26.210 25.500 25.780 16.420 26.250 14.980

ATM Mean 2.517 2.437 2.570 2.156 1.560 1.656
Puts Alpha 2.506 2.427 2.557 2.159 1.560 1.627

T-stat 14.400 14.440 14.310 14.130 17.980 9.540

B. Returns 

Equally-
weighted

OI-weighted 
returns

Only 
nonfinancial 

stocks

100 stocks 
with largest 

option 
volume

Trim 1% of 
returns in 
each tail

Using only 
last quote of 

each day

ATM Mean 2.551 2.378 2.498 1.829 1.674 1.592
Calls Alpha 2.570 2.396 2.515 1.827 1.676 1.629

T-stat 23.780 23.230 23.410 24.230 24.910 15.020

ATM Mean 2.156 2.005 2.189 1.235 1.350 1.636
Puts Alpha 2.140 1.991 2.173 1.238 1.346 1.602

T-stat 12.770 12.610 12.730 16.200 16.290 9.260

Table 4 

Returns from average intraday trade prices

Returns from average intraday midpoint quotes

We report daily t+2 return spreads and alphas for delta-hedged ATM call and puts. Stocks are sorted into 
quintiles based on their lagged option illiquidity. For the 5-1 quintiles, we report (in percent) the mean, the 
alpha from the Carhart model and its t-statistic with Newey-West correction for serial correlation using 8 lags. 
The sample includes the S&P 500 constituents with valid traded options data from January 2004 to December 
2012. Each column corresponds to a different robustness check described in the text. 



Delta interval 1 2 3 4 5 5-1 Delta interval 1 2 3 4 5 5-1
Mean -1.096 -0.476 0.030 0.550 2.193 3.291 -1.071 -0.538 -0.235 0.212 1.387 2.457
Alpha (0.4; 0.6] -0.997 -0.375 0.131 0.657 2.312 3.307 (-0.6 ; -0.4] -1.127 -0.596 -0.294 0.149 1.319 2.446
T-stat -9.260 -3.520 1.090 4.680 12.270 26.200 -7.490 -3.950 -1.680 0.730 4.570 14.170

Mean (0.425; 0.575] -1.015 -0.455 0.052 0.553 2.185 3.203 (-0.575 ; -0.425] -1.020 -0.494 -0.238 0.235 1.403 2.422
Alpha -0.916 -0.354 0.153 0.657 2.302 3.218 -1.076 -0.550 -0.296 0.174 1.334 2.410
T-stat -8.740 -3.370 1.300 4.810 12.590 25.430 -7.280 -3.740 -1.740 0.860 4.830 14.380

Mean (0.45; 0.55] -0.950 -0.441 0.028 0.577 2.304 3.254 (-0.55; -0.45] -0.968 -0.444 -0.209 0.210 1.447 2.415
Alpha -0.851 -0.340 0.130 0.680 2.419 3.269 -1.024 -0.501 -0.268 0.148 1.380 2.404
T-stat -8.230 -3.330 1.110 5.090 12.750 23.310 -6.900 -3.470 -1.630 0.770 5.000 13.760

Mean (0.475; 0.525] -0.820 -0.355 0.042 0.576 2.334 3.154 (-0.525; -0.475] -0.775 -0.488 -0.169 0.259 1.382 2.156
Alpha -0.724 -0.254 0.146 0.679 2.447 3.171 -0.829 -0.546 -0.227 0.199 1.315 2.144
T-stat -6.800 -2.350 1.190 4.950 13.120 22.150 -5.510 -3.630 -1.440 1.020 4.940 12.190

Mean (0.49; 0.51] -0.689 -0.406 0.024 0.525 2.418 3.116 (-0.51; -0.49] -0.797 -0.428 -0.108 0.206 1.334 2.135
Alpha -0.594 -0.303 0.130 0.626 2.533 3.137 -0.853 -0.485 -0.171 0.148 1.270 2.127
T-stat -4.980 -2.330 0.950 4.250 11.350 16.440 -5.240 -2.940 -0.960 0.740 4.590 10.500

A. Daily ATM call option returns B. Daily ATM put option returns

The table reports portfolio results for delta-hedged ATM call and put t+2 returns and alphas. We sort stocks into quintiles based on their lagged option illiquidity. 
For each quintile, we report in percentage the mean, the alpha from the Carhart model and its t-statistic with Newey-West correction for serial correlation, using 8 
lags. The sample includes the S&P 500 constituents with valid traded options data from January 2004 to December 2012.

Table 5
ATM portfolio returns and alphas using various moneyness intervals. Sorting on option illiquidity



Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat
Positive imbalances 1.522E-03 4.67 2.555E-03 9.9
Negative imbalances -4.025E-03 -14.6 -1.641E-03 -7.21
|Imbalances| 8.472E-03 23.26 7.164E-03 23.76
ESS 2.316E+00 9.78 2.035E+00 7.85 1.300E+00 6.19 8.618E-01 3.80
PIN 1.876E-02 13.62 2.001E-02 12.62 2.125E-02 15.08 2.145E-02 13.62
Gamma*σ 2.962E-01 44.38 3.133E-01 23.20 1.943E-01 34.31 2.201E-01 21.15
Vega*ESS -6.703E-03 -0.52 2.432E-02 1.65 -8.034E-03 -0.66 1.436E-02 1.09
Log(option volume) -1.270E-03 -35.94 -1.150E-03 -24.24 -3.852E-04 -12.6 -5.000E-04 -13.95
Controls
ESO(t-1) 3.097E-01 91.49 2.962E-01 81.94 3.076E-01 84.39 2.921E-01 71.99
ESO(t-2) 2.357E-01 76.43 2.311E-01 63.04 2.420E-01 71.36 2.329E-01 63.59
σ -4.682E-02 -57.21 -4.795E-02 -26.64 -4.107E-02 -55.78 -4.197E-02 -27.78
b -1.373E-03 -3.51 -2.290E-03 -4.53 -2.633E-03 -7.08 -3.140E-03 -8.16
log(size) -3.180E-03 -41.59 -3.100E-03 -28.09 -2.726E-03 -36.55 -2.660E-03 -27.12
Leverage 4.919E-03 21.32 4.974E-03 17.17 3.776E-03 19.53 4.103E-03 17.23
Log(stock volume) -3.614E-04 -4.31 -2.800E-04 -2.76 -2.730E-04 -3.29 -5.000E-05 -0.47
|Delta| -2.215E-02 -27.57 -8.052E-02 -63.73 -1.504E-02 -21.04 -5.907E-02 -45.04

Adjusted R2 0.507 0.524 0.455 0.469
# CS regressions 2009 2009 2009 2009
# Obs in cs (avg) 327 327 263 263

We report the results of cross-sectional Fama-Macbeth regressions for daily ATM call option ESO (panel A) and put option (panel B) ESO. 
The regressors are described in the text. Reported are coefficients and Fama-Macbeth t-statistics with Newey-West correction for serial 
correlation using 8 lags. The sample starts in January 2005 and ends in December 2012 following the availability of the imbalance variable.

Table 6
Option effective spread (ESO) regressions

A. Daily ATM call options B. Daily ATM put options



Option returns from portfolio sorts on various variables. ATM calls and puts

1 2 3 4 5 5-1 5-1 t-stat 1 2 3 4 5 5-1 5-1 t-stat
ESO -1.089 -0.480 -0.145 0.467 2.846 3.938 28.490 -1.374 -0.758 -0.493 -0.116 1.937 3.311 17.010
ESS 0.269 0.335 0.267 0.274 0.430 0.161 1.810 -0.502 -0.370 -0.215 0.044 0.221 0.724 10.240
σ 0.232 0.216 0.322 0.342 0.456 0.221 2.120 -0.662 -0.283 -0.079 0.043 0.156 0.818 9.510
b 0.195 0.268 0.349 0.312 0.448 0.248 2.580 -0.207 -0.212 -0.146 -0.134 -0.118 0.089 0.940
log(size) -0.030 0.216 0.379 0.501 0.511 0.540 4.830 0.171 -0.151 -0.362 -0.353 -0.117 -0.289 -2.120
Leverage 0.284 0.305 0.284 0.295 0.414 0.129 1.530 -0.029 -0.156 -0.273 -0.204 -0.169 -0.140 -1.660
|Delta| -0.188 0.181 0.357 0.603 0.623 0.817 11.350 -0.795 -0.387 -0.055 0.130 0.289 1.080 15.280
Log(option volume) 0.211 0.146 0.392 0.640 1.484 1.278 14.340 -0.027 -0.079 -0.007 0.154 0.752 0.779 7.610
Log(stock volume) -0.127 0.093 0.264 0.464 0.869 0.997 9.500 -0.521 -0.319 -0.195 -0.068 0.259 0.780 4.440
PIN 0.325 0.309 0.288 0.311 0.259 -0.069 -1.140 -0.139 -0.145 -0.237 -0.217 -0.173 -0.035 -0.440
Vega*ESS 0.034 0.147 0.336 0.400 0.660 0.626 8.460 -0.590 -0.096 -0.145 -0.021 0.023 0.613 8.960
Gamma*σ 0.239 0.363 0.385 0.320 0.267 0.028 0.340 -0.239 -0.209 -0.121 -0.180 -0.065 0.175 2.280
Positive imbalances 0.555 0.147 -0.137 -0.845 -1.090 -1.645 -13.660 0.239 0.077 -0.436 -0.836 -0.540 -0.777 -7.240
Negative imbalances 1.235 1.170 1.279 1.160 0.757 -0.478 -5.180 0.912 0.547 0.783 0.662 0.502 -0.408 -4.440
Imbalances 1.224 1.261 0.861 0.317 -0.777 -2.001 -26.750 0.755 0.735 0.426 -0.026 -0.689 -1.444 -21.430

Table 7

A. Daily ATM call option returns at t+1 B. Daily ATM put option returns at t+1

The table reports portfolio results for daily delta-hedged risk adjusted with Fama-French-Carhart factors call and put returns on day  t+1. We sort stocks into quintiles based on each of 
the variables on day t. The variables are described in the text. For each quintile, we report in percentage the mean return. The sample includes the S&P 500 constituents with valid 
traded options data from January 2004 to December 2012 except for the last three rows which use data from January 2005 to December 2012.



Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat
ESO 0.762 29.69 0.755 29.50 0.656 21.27 0.650 21.10
Positive imbalances -0.039 -23.08 -0.027 -19.44
Negative imbalances -0.011 -8.69 -0.004 -3.23
Imbalances -0.024 -29.47 -0.015 -24.52
ESS 4.273 3.93 4.603 4.35 9.868 9.42 9.989 9.53
PIN -0.013 -2.11 -0.013 -2.00 -0.013 -2.10 -0.014 -2.22
Gamma*σ -0.558 -13.24 -0.556 -13.21 -0.483 -12.17 -0.483 -12.16
Vega*ESS -0.207 -3.43 -0.214 -3.67 -0.381 -6.47 -0.369 -6.30
log(O/S) 0.005 24.74 0.005 26.93 0.002 13.38 0.003 15.01
Controls
σ 0.069 11.76 0.072 12.16 0.053 12.04 0.055 12.55
b 0.009 3.67 0.009 3.61 0.009 4.08 0.009 3.91
log(size) 0.005 12.70 0.005 13.99 0.001 4.07 0.002 5.43
Leverage -0.006 -5.37 -0.007 -5.50 -0.003 -2.36 -0.003 -2.39
|Delta| 0.159 23.09 0.152 22.25 0.139 23.26 0.131 22.57

Adjusted R2 0.090 0.090 0.079 0.078
# CS regressions 2011 2011 2011 2011
# Obs in cs (avg) 302 302 228 228

Table 8

We report the results of cross-sectional Fama-Macbeth regressions for daily delta-hedged call option (panel A) and put option (panel B) 
returns. The regressors are described in the text. Reported are coefficients and Fama-MacBeth t-statistics with Newey-West correction 
for serial correlation using 8 lags. The sample starts in January 2005 and ends in December 2012 following the availability of the 
imbalance variable.

A. Daily ATM call option returns at t+1 B. Daily ATM put option returns at t+1

Multivariate Fama-MacBeth regressions for delta-hedged ATM option returns



Base case 
from Table 8

Nonfinancial 
stocks only

Trim 1% 
of returns

Add 
RS(t+1)

Add 
S(t+1), 
O(t+1)

Add RO(t), 
|RS(t)|

Add all 
variables

Univariate 
regression 
on  ESO 

RO(t+2) on 
left-hand-

side
ATM Coeff 0.762 0.752 0.493 0.749 0.747 0.587 0.601 0.407 0.219
Calls T-stat 29.690 28.390 44.090 29.840 29.670 28.070 28.940 26.680 14.340

Adj R2 0.090 0.090 0.077 0.171 0.097 0.288 0.324 0.025 0.125

Base case 
from Table 8

Nonfinancial 
stocks only

Trim 1% 
of returns

Add 
RS(t+1)

Add 
S(t+1), 
O(t+1)

Add RO(t), 
|RS(t)|

Add all 
variables

Univariate 
regression 
on  ESO 

RO(t+2) on 
left-hand-

side
ATM Coeff 0.656 0.655 0.429 0.659 0.655 0.511 0.526 0.416 0.172
Puts T-stat 21.270 21.200 29.880 21.470 21.300 18.330 19.380 16.480 9.390

Adj R2 0.079 0.078 0.067 0.158 0.084 0.217 0.303 0.025 0.107

We report the coefficients on option effective spreads from Fama-Macbeth regressions using daily ATM option returns. Except for the 
penultimate column the regressors from Table 8 (columns 1-2) are always included in the regressions but not reported here. T-statistics are 
computed with Newey-West correction for serial correlation using 8 lags. Adjusted R2 are reported as well. The sample includes the S&P 
500 constituents with valid traded options data from January 2005 to December 2012. Each column corresponds to a different robustness 
check described in the text. "All variables" refers to the current stock price, the current stock return, the current volume-weighted option 
price, the lagged absolute stock return and the lagged return on the option delta hedge. 

Table 9

A. Daily call option return regressions. ESO coefficients and statistics

B. Daily put option return regressions. ESO coefficients and statistics

Option effective spread coefficients from Fama-Macbeth regressions. Various robustness checks
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In this appendix we �rst provide descriptive statistics for various de�nitions of option returns,

and we discuss their impact on the estimates of the illiquidity premium. We then compare

quoted spreads based on the di¤erent option data used to compute returns. Next, we analyze

the impact of order imbalances on returns at di¤erent future dates. Finally, we document

and discuss e¤ective option dollar spreads at di¤erent levels of bid prices.

A1. Option Returns: Descriptive Statistics

We compute the benchmark option returns used in our analysis using the volume-weighted

average traded intraday prices each day, as discussed in Section 2.2 of the main paper. Ta-

ble 4 in the main paper reports results for three additional de�nitions of returns: Returns

computed using the last trade price each day, using the volume-weighted average of the

1



midquotes corresponding to each intraday trade price, and �nally using the midquote corre-

sponding to the last trade price for each day. These prices and quotes are all obtained from

the LiveVol database. In this appendix, we compare those returns with end-of-day quotes

from OptionMetrics.

Table 1 in the main paper contains descriptive statistics for our benchmark return de-

�nition using average trade prices. Table OA1 contains descriptive statistics for the four

additional return de�nitions. Comparing Table 1 and Table OA1, we see that the di¤erent

return de�nitions share several key characteristics: The average return is vastly dominated

by the standard deviation, skewness is large and positive, kurtosis is large, �rst-order re-

turn autocorrelations are negative, and the �rst-order autocorrelations of absolute returns

are positive. There are some notable di¤erences between the benchmark returns in Table 1

and the OptionMetrics returns based on end-of-day quotes in panel D of Table OA1. The

benchmark returns are more volatile but less prone to outliers as evidence by their lower

skewness and kurtosis. The OptionMetrics returns have lower �rst-order autocorrelation,

which is partly due to the fact that they are based on midquotes and not traded prices, and

partly due to the fact that they are recorded at the end-of-day, and so do not necessarily

correspond to a recent trade, but are instead partly model-based. The lower volatility in the

OptionMetrics returns is likely due to the same e¤ects.

A2. Illiquidity Premia from Di¤erent Option Returns

Panel A of Table 3 in the main paper reports average quintile day t+ 2 returns and alphas

from sorts on our benchmark relative e¤ective spread option illiquidity (ESO) measure on

day t. Table OA2 repeats the information from Table 3 for our four alternative return

de�nitions. Comparing panel A in Table 3 with the other LiveVol-based returns in panels

A-C of Table OA2, we see that all 5-1 return and alpha spreads are positive and large, and

strongly statistically signi�cant. Note also that call option spreads are generally larger than

2



put option spreads. For calls, OTM spreads are generally larger than ATM but this is not

the case for puts. Note also the strong degree of monotonicity in option returns across ESO

quintiles, which is quite striking and illustrated further in Figure OA1.

The spreads in returns computed from end-of-day quotes in panel D of Table OA2 are

generally smaller than those computed from intraday information. Focusing on ATM calls,

the di¤erence between the 3:4% illiquidity premium reported in panel A of Table 3 of the

paper and the 0:2% illiquidity premium reported in panel D of Table OA2, can be decomposed

as follows: 1) It is partly driven by the use of intraday averages versus last trade prices (3:4%

versus 1:7%); 2) partly by using trade prices versus mid-quotes (1:7% versus 1:6%); 3) and

partly by using mid-quotes at the time of last trade versus end-of-day (OptionMetrics) mid-

quotes (1:6% versus 0:2%). We conclude that the di¤erence between our benchmark results

and the end-of-day estimate of the illiquidity premium is mainly driven by the �rst and

the third factor; the use of trade prices versus mid-quotes has a relatively small impact.

Decomposing the di¤erence between OTM call spreads yields a similar conclusion.

Figure OA1 plots the average quintile returns for di¤erent option categories and return

de�nitions. Note again the strong monotonicity in option returns across ESO quintiles. This

monotonicity is particularly evident for the four sets of returns based on intraday price data.

A3. Comparing Average Relative Quoted Spreads

In the main paper we rely on option returns computed from intraday price information rather

than end-of-day quotes. Figure OA1 shows that it does not matter much whether we use

prices or quotes, and whether we use last-available prices/quotes or average prices/quotes:

The option returns are strongly increasing in option illiquidity. However, the option return

spreads are smaller when relying on end-of-day quotes, so it is worth investigating comparable

illiquidity measures across the LiveVol and OptionMetrics data sets. To this end Table OA3

compares average relative quoted spreads computed using the quotes from the time of the
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last trade each day (panel A) and end-of-day quotes (panel B).

Speci�cally, for each option contract, we compute the daily relative quoted spread

ILOt;n =
OAt(Kn; Tn)�OBt(Kn; Tn)

Ot(Kn; Tn)
(0.1)

where the prices Ot(Kn; Tn), OAt(Kn; Tn); and OBt(Kn; Tn) are, respectively, the end of day

closing mid-point, ask, and bid quotes, for an option with strike price Kn and maturity Tn.

Note Ot(Kn; Tn) = (OAt(Kn; Tn) +OBt(Kn; Tn))=2.

From ILOt;n we compute equally-weighted average relative spreads

ILOt =
1

N

XN

n=1
ILOt;n (0.2)

where N is the number of available contracts that are within the particular option category

for a given �rm.

Panel C computes the ratio of panel B to panel A in percent. The results are quite

stark: For ATM call options, the average relative quoted spreads are 25� 45% higher when

using end-of-day quotes (OptionMetrics) compared with last-trade quotes (LiveVol). For

ATM put options the di¤erence are even larger at 35� 55%. Market makers widen spreads

and base quotes partly on model prices when market information is relatively limited. As a

consequence option returns computed from end-of-day midpoint quotes, when there may be

limited trading, are less informative about the level of option market liquidity, which is of

course central to our analysis in the paper. For put options the illiquidity spread in returns

is not signi�cant when using OptionMetrics returns, which is likely a re�ection of the lack

of information about option liquidity in end-of-day midquotes.

We conclude that option returns based on intraday prices and quotes provide superior

information about option market liquidity and rely on them for the benchmark results in

the main paper.

4



A4. The e¤ect of time t imbalances on time t+ 2 returns

In Table 8 of the main paper we use Fama-MacBeth regressions to study the impact of order

imbalances (end-user net buying) on day t for returns on day t+1. In Table OA4 we instead

report regression results using returns on day t+2, which matches the timing used in the rest

of the paper. A comparison of Table 8 and Table OA4 indicates that the estimation results

are very similar: The coe¢ cient on ESO in predicting returns is large and positive. Positive

imbalances are a signi�cant negative predictor of returns, and the signed imbalance variable

in row 4 is a negative predictor of returns as well. Negative imbalances are not signi�cant

for calls in Table OA4 but negative and signi�cant for puts. In Table 8 negative imbalances

are signi�cant for both calls and puts.

We conclude from Table OA4 that while the timing of returns matters somewhat for

the relation between imbalances and subsequent returns, order imbalances are an important

driver of the cross-section of option returns even after controlling for overall option illiquidity

as captured by ESO.

A5. The e¤ect of time t imbalances on time t+1 returns: Subsam-

ples

In Figure OA2, we split the sample into subsamples. The subsamples only include days on

which the fraction of stocks with positive and negative order imbalances exceeds a given

percentile. For example, 0:25 indicates that the 503 days in the sample (of a total of 2011

days) with the largest negative imbalances are used. We compute average 5�1 ATM option

return spreads based on an ESO sort only for the days in the subsample. The horizontal

axis in Figure OA2 indicates the quantile cuto¤ for the days included in the return spread

computation on the vertical axis. The solid lines show that the di¤erence in 5 � 1 return

spreads for calls between the most negative and the most positive imbalance days is large. For

example, on the 10% of days with the most negative call imbalances, the 5� 1 return spread
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is close to 6% per day whereas on the 10% of days with the most positive call imbalances the

5�1 call return spread is only around 1:5% per day. For reference, the � marker indicates the

full-sample average call option return spread from Panel C of Table 3, which is around 3:9%

per day. Compared to the call return spreads, the 5� 1 put return spreads in dashes di¤er

much less across subsamples of days with large negative and large positive put imbalances.

We conjecture that this is due to the fact that call demand by end-users is on average more

unbalanced than put demand, as is evident from Figure 4, as well as to the larger volume

in calls, see Table 2. Note that the } marker indicates the overall average return spread for

puts from Panel D of Table 3, which is around 3:3% per day. We conclude from Figure OA2

that when studying the cross-sectional relation between option e¤ective spreads and option

returns on day t + 1, the option order imbalance on day t is an important determinant of

the strength of this relation.

A6. Option dollar spreads across bid price levels

While we rely on e¤ective relative spreads throughout the paper, it is of interest to assess how

the distribution of dollar spreads varies with the bid price of the option. Figure OA3 follows

de Fontnouvelle, Fishe, and Harris (2003) and reports volume-weighted e¤ective dollar option

spreads for �ve categories of options de�ned by the option bid price. The left-side panels

contain results for ATM call options and the right-side panels for ATM put options. For low-

bid options, the dollar e¤ective spreads exhibit a slight downward trend over time, whereas

for bids above $5 the dollar spreads do not contain a trend. Note that in the early part of

the sample, when valuations are lower, the high-price categories have some missing values.

While Figure OA3 plots time series of the average dollar spreads by bid price for ATM

options, Table OA5 reports various cross-sectional descriptive statistics for all three money-

ness categories. Not surprisingly, on average the cross-sectional variation is quite substantial.

Table OA5 also shows that while the average number of trades tends to increase with the bid

6



size, the average trading volume does not. Finally, Table OA5 shows that for most available

option classes, bids are below $2. This simply re�ects the cross-sectional distribution of

the underlying stock price levels and strongly suggests that it is sensible to rely on e¤ective

relative spreads.

7



Figure OA1. Average Option Returns by ESO Quintile. Various Return De�nitions
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Notes to Figure: Using various de�nitions of option returns, we sort stocks into quintiles

based on their average option e¤ective spreads (ESO) on day t and plot the corresponding

average quintile option returns on day t + 2. Each panel corresponds to a di¤erent option

category.
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Figure OA2. Option Return Spreads in Subsamples with High Negative or Positive

Imbalances
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Notes to Figure: We split the sample into days with the most positive and negative order

imbalances, respectively, and compute average 5 � 1 ATM option return spreads based on

a sort on the e¤ective spread ESO on those days only. The horizontal axis indicates the

quantile cuto¤ for the imbalance days included. For example, 0:2 indicates that the 20%

days with the largest negative imbalance days are used. The solid lines depict return spreads

for calls and dashes depict put spreads. The �marker indicates the overall average call option

return spread from Table 3 and the } marker indicates the overall average return spread for

puts.
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Figure OA3. Average ATM Option Dollar Spreads by Option Bid Price.

Calls in Left Column and Puts in Right Column.
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Notes to Figure: We plot the average dollar e¤ective spreads across �rms and across ATM

option series with bid prices as indicated in the titles to each panel. The sample period is

January 2004 to December 2012.
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OTM ATM ALL OTM ATM ALL
Average -0.27 0.06 0.15 -1.48 0.01 -0.50
Std.dev. 27.15 15.98 18.20 22.51 18.13 19.20
Skewness 3.18 1.79 2.79 2.90 2.12 2.78
Kurtosis 63.69 42.32 70.23 47.63 39.38 55.80
ρ(1) -0.12 -0.17 -0.13 -0.04 -0.08 -0.02
abs [ρ(1)] 0.11 0.17 0.15 0.11 0.13 0.13

OTM ATM ALL OTM ATM ALL
Average -1.19 0.01 -0.28 -1.95 0.10 -0.65
Std.dev. 26.27 17.61 18.74 23.01 19.35 20.05
Skewness 2.19 1.22 1.66 2.28 1.86 2.14
Kurtosis 39.62 25.07 35.60 31.57 31.36 37.14
ρ(1) -0.19 -0.24 -0.21 -0.10 -0.14 -0.09
abs [ρ(1)] 0.13 0.20 0.18 0.12 0.14 0.13

OTM ATM ALL OTM ATM ALL
Average -0.50 -0.06 -0.14 -1.61 0.00 -0.56
Std.dev. 26.02 15.37 17.27 22.09 18.10 18.94
Skewness 3.09 1.73 2.46 2.79 2.17 2.60
Kurtosis 63.67 40.32 59.86 44.01 41.15 49.96
ρ(1) -0.12 -0.17 -0.14 -0.04 -0.08 -0.02
abs [ρ(1)] 0.11 0.18 0.16 0.12 0.13 0.13

OTM ATM ALL OTM ATM ALL
Average 0.40 0.01 0.00 0.25 0.08 0.05
Std.dev. 14.42 6.65 8.45 10.09 5.88 7.29
Skewness 3.43 2.52 3.59 3.51 2.54 3.75
Kurtosis 67.18 55.15 84.98 75.78 53.85 91.24
ρ(1) -0.05 -0.06 -0.07 0.00 -0.02 -0.12
abs [ρ(1)] 0.11 0.14 0.14 0.09 0.10 0.10

Notes to Table: We provide descriptive statistics for daily delta-hedged option returns computed in various ways. First we 
compute the descriptive statistics for each stock and then we take the cross-sectional averages of these statistics. We report 
the mean (in percent), standard deviation (in percent), skewness, kurtosis, first-order autocorrelation of delta-hedged 
returns ρ(1), and first-order autocorrelation of the absolute value of delta-hedged returns, abs[ρ(1)]. OTM (out-of-the-
money) corresponds to 0.125<Δ≤0.375 for calls and -0.375<Δ≤-0.125 for puts, where Δ is the Black-Scholes delta. ATM 
(at-the-money) corresponds to 0.375<Δ≤0.625 for calls and -0.625<Δ≤-0.375 for puts. Options are aggregated across 
maturities between 30 and 180 days. The option data are from LiveVol and OptionMetrics. The sample includes the S&P 
500 constituents with valid traded options data from January 2004 to December 2012.

Table OA1: Descriptive statistics of daily delta-hedged option returns. Various return definitions

A. Returns computed from last trade price each day

B. Returns computed from volume weighted quoted midpoints from all trades during the day

C. Returns computed from midpoint quote corresponding to last trade of the day

D. Returns computed from OptionMetrics end-of-day midpoint quote 
Daily delta-hedged call returns Daily delta-hedged put returns

Daily delta-hedged call returns Daily delta-hedged put returns

Daily delta-hedged call returns Daily delta-hedged put returns

Daily delta-hedged call returns Daily delta-hedged put returns



1 2 3 4 5 5-1 1 2 3 4 5 5-1
OTM Mean -1.060 -0.647 -0.305 0.143 2.060 3.125 -1.262 -1.017 -0.918 -0.769 -0.008 1.252

Alpha -0.940 -0.524 -0.172 0.275 2.205 3.147 -1.279 -1.046 -0.956 -0.813 -0.063 1.215
T-stat -8.000 -3.710 -1.200 1.650 10.170 20.480 -7.140 -5.250 -3.950 -2.800 -0.170 5.520

ATM Mean -0.610 -0.363 -0.298 0.000 1.113 1.724 -0.805 -0.478 -0.272 -0.074 0.850 1.656
Alpha -0.548 -0.297 -0.225 0.079 1.211 1.757 -0.825 -0.504 -0.303 -0.112 0.802 1.627
T-stat -7.540 -4.080 -2.530 0.730 7.640 14.980 -7.520 -4.290 -2.060 -0.600 3.070 9.540

ALL Mean -0.608 -0.519 -0.362 -0.047 1.035 1.646 -0.886 -0.589 -0.582 -0.398 0.126 1.006
Alpha -0.533 -0.434 -0.272 0.054 1.148 1.683 -0.908 -0.620 -0.622 -0.446 0.069 0.973
T-stat -5.870 -4.280 -2.170 0.380 6.140 13.230 -6.160 -3.540 -2.790 -1.690 0.200 4.290

1 2 3 4 5 5-1 1 2 3 4 5 5-1
OTM Mean -2.296 -1.545 -0.889 -0.278 1.616 3.921 -2.024 -1.471 -1.233 -0.982 -0.181 1.839

Alpha -2.141 -1.388 -0.727 -0.117 1.793 3.940 -2.089 -1.541 -1.306 -1.059 -0.267 1.820
T-stat -15.770 -9.550 -4.470 -0.640 8.190 28.180 -10.110 -6.920 -4.970 -3.410 -0.690 8.360

ATM Mean -1.124 -0.507 -0.202 0.208 1.424 2.551 -1.039 -0.504 -0.215 0.072 1.116 2.156
Alpha -1.023 -0.406 -0.098 0.315 1.547 2.570 -1.096 -0.563 -0.275 0.009 1.044 2.140
T-stat -10.720 -4.030 -0.880 2.420 8.960 23.780 -7.800 -3.840 -1.600 0.040 3.690 12.770

ALL Mean -1.170 -0.749 -0.457 -0.127 0.803 1.978 -1.269 -0.772 -0.661 -0.475 0.034 1.293
Alpha -1.062 -0.635 -0.342 -0.002 0.941 2.007 -1.327 -0.834 -0.728 -0.548 -0.048 1.273
T-stat -9.570 -5.100 -2.370 -0.010 4.670 16.570 -7.590 -4.280 -2.980 -1.950 -0.130 5.840

1 2 3 4 5 5-1 1 2 3 4 5 5-1
OTM Mean -1.140 -0.736 -0.447 -0.054 1.769 2.914 -1.299 -1.063 -0.987 -0.861 -0.133 1.164

Alpha -1.021 -0.613 -0.313 0.079 1.921 2.943 -1.317 -1.095 -1.029 -0.911 -0.198 1.118
T-stat -8.730 -4.390 -2.200 0.470 8.690 19.030 -7.240 -5.450 -4.190 -3.080 -0.530 5.010

ATM Mean -0.658 -0.402 -0.349 -0.071 0.936 1.592 -0.817 -0.486 -0.287 -0.096 0.819 1.636
Alpha -0.595 -0.336 -0.275 0.010 1.037 1.629 -0.838 -0.512 -0.320 -0.136 0.764 1.602
T-stat -8.440 -4.580 -3.090 0.090 6.760 15.020 -7.610 -4.330 -2.170 -0.730 2.890 9.260

ALL Mean -0.696 -0.581 -0.417 -0.152 0.783 1.481 -0.917 -0.613 -0.617 -0.452 0.008 0.918
Alpha -0.619 -0.494 -0.325 -0.048 0.901 1.522 -0.940 -0.645 -0.660 -0.505 -0.058 0.877
T-stat -6.980 -4.830 -2.580 -0.330 4.760 12.030 -6.300 -3.650 -2.910 -1.890 -0.160 3.800

1 2 3 4 5 5-1 1 2 3 4 5 5-1
OTM Mean -0.200 -0.154 -0.020 0.143 0.888 1.088 -0.030 -0.071 -0.056 -0.080 0.051 0.081

Alpha -0.115 -0.071 0.062 0.225 0.976 1.091 -0.001 -0.044 -0.032 -0.060 0.064 0.065
T-stat -1.300 -0.780 0.700 2.500 9.800 17.830 -0.010 -0.500 -0.340 -0.630 0.600 1.300

ATM Mean -0.103 -0.039 -0.056 0.007 0.108 0.211 0.053 0.036 0.025 -0.008 0.023 -0.030
Alpha -0.069 -0.005 -0.023 0.043 0.151 0.220 0.073 0.055 0.043 0.007 0.032 -0.041
T-stat -1.480 -0.110 -0.480 0.890 2.850 7.140 1.850 1.350 0.920 0.140 0.580 -1.320

ALL Mean -0.159 -0.205 -0.182 -0.079 0.259 0.418 -0.033 -0.065 -0.098 -0.060 -0.025 0.008
Alpha -0.113 -0.158 -0.136 -0.029 0.318 0.431 -0.012 -0.045 -0.080 -0.045 -0.016 -0.005
T-stat -2.200 -3.020 -2.370 -0.520 4.980 11.060 -0.220 -0.760 -1.290 -0.670 -0.210 -0.110

D. Returns computed from OptionMetrics end-of-day midpoint quote 

Notes to Table: The table reports portfolio results for daily delta-hedged call and put returns and alphas. Option illiquidity is obtained as volume-weighted 
effective spreads from intra-day LiveVol data. For each quintile, we report in percent the mean, the alpha from the Carhart model and its t-statistic with 
Newey-West correction for serial correlation, using 8 lags. The sample includes the S&P 500 constituents with valid traded options data from January 
2004 to December 2012.

A. Daily call option returns at t+2 B. Daily put option returns at t+2

Table OA2. Day t+2 portfolio returns and alphas. sorting on option illiquidity on day t. Various return definitions

A. Daily call option returns at t+2 B. Daily put option returns at t+2

A. Daily call option returns at t+2 B. Daily put option returns at t+2

A. Daily call option returns at t+2 B. Daily put option returns at t+2
A. Returns computed from last trade price each day

B. Returns computed from volume weighted quoted midpoints from all trades during the day

C. Returns computed from midpoint quote corresponding to last trade of the day



1 2 3 4 5 1 2 3 4 5
OTM 0.0645 0.0776 0.1041 0.1419 0.2366 0.0530 0.0564 0.0758 0.1043 0.1852

ATM 0.0320 0.0370 0.0490 0.0678 0.1262 0.0285 0.0294 0.0378 0.0514 0.0976

ALL 0.0390 0.0518 0.0710 0.0978 0.1728 0.0373 0.0438 0.0590 0.0808 0.1478

1.0000 2.0000 3.0000 4.0000 5.0000 1.0000 2.0000 3.0000 4.0000 5.0000
OTM 0.0900 0.1120 0.1479 0.1965 0.2841 0.0737 0.0842 0.1118 0.1515 0.2375

ATM 0.0456 0.0534 0.0692 0.0934 0.1557 0.0408 0.0449 0.0562 0.0741 0.1247

ALL 0.0554 0.0738 0.0998 0.1346 0.2102 0.0535 0.0648 0.0861 0.1160 0.1891

1.00 2.00 3.00 4.00 5.00 1.00 2.00 3.00 4.00 5.00
OTM 39.54 44.27 42.13 38.46 20.04 39.17 49.28 47.48 45.29 28.26

ATM 42.29 44.24 41.27 37.88 23.36 42.85 52.60 48.51 44.14 27.74

ALL 41.95 42.39 40.53 37.60 21.63 43.44 47.72 45.97 43.59 27.93

Notes to Table: The table reports average relative quoted spreads for each option illiquidity quintile using either the quotes 
from the last trade during the day (LiveVol) or the end-of-day quote (OptionMetrics). The sample includes the S&P 500 
constituents with valid traded options data from January 2004 to December 2012.

B. Using end-of-day quotes from OptionMetrics
Daily call option spreads Daily put option spreads

C. Panel B over panel A in percent
Daily call option spreads Daily put option spreads

Table OA3. Average relative quoted spreads from last-trade and end-of-day. By option illiquidity quintile

A. Using last-trade quotes from LiveVol
Daily call option spreads Daily put option spreads



coeff t-stat coeff t-stat coeff t-stat coeff t-stat
ESO 0.2192 14.34 0.2163 14.32 0.1720 9.39 0.1723 9.35
Positive Imbalances -0.0116 -6.68 -0.0047 -3.13
Negative Imbalances 0.0018 1.37 -0.0040 -2.81
Imbalances -0.0039 -6.47 -0.0042 -7.07
ESS 2.3766 2.09 2.3978 2.13 3.8122 3.66 3.7444 3.62
PIN -0.0009 -0.10 -0.0023 -0.31 -0.0083 -1.09 -0.0074 -0.97
Gamma*σ -0.1655 -6.66 -0.1626 -6.52 -0.1494 -5.28 -0.1465 -5.27
Vega*ESS -0.1768 -2.02 -0.1949 -2.54 -0.2830 -4.00 -0.2826 -4.04
log(O/S) 0.0019 9.66 0.0020 11.32 0.0005 3.07 0.0006 3.11
Controls
σ 0.0300 7.17 0.0312 7.66 0.0229 5.30 0.0230 5.43
b 0.0036 1.56 0.0031 1.33 0.0025 1.15 0.0021 1.01
log(Size) 0.0025 7.80 0.0028 8.93 0.0014 4.63 0.0015 4.99
Leverage -0.0024 -1.84 -0.0023 -1.84 -0.0016 -1.15 -0.0014 -1.02
|Delta| -0.5061 -57.75 -0.5093 -58.16 -0.3884 -54.87 -0.3889 -56.05

Adjusted R2 0.125 0.125 0.107 0.107
# CS regressions 2011 2011 2011 2011
# Obs in CS (avg) 298 298 223 223

Table OA4. Multivariate Fama-MacBeth regressions for delta-hedged ATM option returns on day t+2

Panel A. Daily ATM call option returns at t+2 Panel B. Daily ATM put option returns at t+2

Notes to Table: We report the results of cross-sectional Fama-Macbeth regressions for daily delta-hedged call option (Panel A) and put 
option (Panel B) returns. The regressors are described in the paper. Reported are coefficients and Fama-MacBeth t-statistics with Newey-
West correction for serial correlation using 8 lags. The sample starts in January 2005 and ends in December 2012 following the availability 
of the imbalance variable.



Bid interval Calls OTM ATM ALL Puts OTM ATM ALL
(0; $2) Mean 0.081 0.089 0.087 Mean 0.077 0.082 0.080

Std 0.048 0.058 0.052 Std 0.049 0.056 0.052
Min 0.002 0.004 0.003 Min 0.002 0.005 0.001
Max 0.473 0.603 0.649 Max 0.498 0.477 0.569
Avg # Stocks 358 256 426 Avg # Stocks 334 180 383
Avg Volume 662.0 592.6 1058.5 Avg Volume 514.6 364.7 695.8
Avg # Trades 28.2 28.5 45.4 Avg # Trades 20.0 16.9 27.1

($2; $5) Mean 0.136 0.128 0.134 Mean 0.125 0.124 0.127
Std 0.084 0.086 0.090 Std 0.088 0.090 0.092
Min 0.036 0.009 0.005 Min 0.020 0.009 0.004
Max 0.510 0.788 1.020 Max 0.597 0.835 0.968
Avg # Stocks 63 217 325 Avg # Stocks 108 202 290
Avg Volume 478.0 343.7 374.5 Avg Volume 373.0 244.8 320.2
Avg # Trades 24.2 19.9 22.8 Avg # Trades 16.3 12.5 16.5

($5; $10) Mean 0.251 0.200 0.200 Mean 0.218 0.198 0.200
Std 0.135 0.130 0.158 Std 0.128 0.138 0.150
Min 0.138 0.046 0.019 Min 0.086 0.041 0.027
Max 0.565 0.859 1.513 Max 0.647 0.920 1.251
Avg # Stocks 10 56 160 Avg # Stocks 20 70 136
Avg Volume 998.1 291.4 161.7 Avg Volume 400.1 170.4 151.8
Avg # Trades 44.6 18.5 13.7 Avg # Trades 20.0 10.3 10.1

($10; $20) Mean 0.389 0.279 0.302 Mean 0.354 0.289 0.300
Std 0.151 0.170 0.244 Std 0.200 0.191 0.234
Min 0.272 0.119 0.071 Min 0.184 0.101 0.068
Max 0.743 0.853 1.602 Max 0.796 1.046 1.272
Avg # Stocks 4 13 51 Avg # Stocks 7 19 47
Avg Volume 777.6 386.5 221.8 Avg Volume 385.4 164.1 126.0
Avg # Trades 82.0 34.0 17.5 Avg # Trades 31.4 12.8 9.2

($20; ∞) Mean 0.432 0.425 0.480 Mean 0.497 0.451 0.448
Std 0.259 0.197 0.352 Std 0.229 0.299 0.387
Min 0.147 0.226 0.174 Min 0.291 0.190 0.145
Max 1.146 1.075 1.815 Max 1.036 1.400 2.039
Avg # Stocks 2 5 12 Avg # Stocks 3 7 14
Avg Volume 719.4 508.9 165.6 Avg Volume 1059.8 213.4 619.8
Avg # Trades 114.6 98.1 29.1 Avg # Trades 110.1 27.6 13.3

Table OA5. Volume weighted effective dollar spreads by bid price

Notes to Table: The table presents summary statistics for the illiquidity measures at different option bid price levels. Option 
illiquidity is estimated from intraday data as the volume weighted average of the effective dollar spread for each day. For each 
stock and on each day, we compute the average illiquidity of all the available options in a given category, and then we compute 
across time the mean, standard deviation, minimum, and maximum. Finally, we report the across stock averages of these 
statistics. We also report the average number of stocks per day, the average option volume (in number of contracts) and average 
number of trades per stock per day. The sample includes the S&P500 constituents with valid traded options data from January 
2004 to December 2012.
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